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Dynamics of spherical particles on a surface: Collision-induced sliding and other effects
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We present a model for the motion of hard spherical particles on a two-dimensional surface. The model
includes both the interaction between the particles via collisions and the interaction of the particles with the
substrate. We analyze in detail the effects of sliding and rolling friction, which are usually overlooked. It is
found that the properties of this particulate system are influenced significantly by the substrate-particle inter-
actions. In particular, sliding of the particles relative to the substrateafter a collision leads to considerable
energy loss for common experimental conditions. The presented results provide a basis that can be used to
realistically model the dynamical properties of the system, and provide further insight into density fluctuations
and related phenomena of clustering and structure formation.@S1063-651X~99!06507-1#

PACS number~s!: 83.10.Pp, 45.05.1x, 46.55.1d, 45.50.Tn
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I. INTRODUCTION

In this paper we address the problem of the motion o
set of hard spherical particles on an inclined, in general
namic, surface. While there have been substantial effort
understand in more detail the problem of the nature of in
action of a single particle with the substrate@1–10#, these
efforts have not been extended to the multiparticle situat
On the other hand, there has been recently a lot of intere
one-@11–16# or two- @17–24# dimensional granular system
as well as in related astrophysical problems@25#. These sys-
tems are of considerable importance, since they provide
ful insight into more complicated systems arising in indu
trial applications, and also because of many fascina
effects that occur in simple experimental settings and th
retical models. Theoretical and computational efforts ha
led to results including density fluctuations, clustering, a
inelastic collapse@12–14,16–20#. Further, a system of har
particles energized by either an oscillating side wall or by
oscillating surface itself has been explored recen
@14,16,20#. This system, due to its similarity to one- or two
dimensional gas, appears to be a good candidate for mo
ing using a continuous hydrodynamic approach@14,16,20#.

It is of great interest to connect theoretical and compu
tional results with experimental ones. Very recently, it h
been observed experimentally that many complex phen
ena occur in the seemingly simple system of hard partic
rolling and/or sliding on a substrate. In particular, cluster
@21,22# and friction-based segregation@22# have been ob-
served. While some of the experimental results~e.g., cluster-
ing! could be related to the theoretical results@20#, there are
still considerable discrepancies. Theoretically, it has b
found that the coefficient of restitution, measuring the el
ticity of particle-particle collisions, is the important param
eter of the problem, governing the dynamical properties
the system. While the coefficient of restitution is definite
an important quantity, a realistic description of an expe
mental system cannot be based just on this simple param
As pointed out in@21#, the rotational motion of the particle
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and the interaction with the substrate introduce an additio
set of parameters~e.g., the coefficients of rolling and slidin
friction!, which have not been included in the theoretic
descriptions of the system.

Our goal is to bridge this gap between experiment a
theory, and formulate a model that includes both partic
particle and particle-substrate interactions, allowing for
comparison between experimental and theoretical res
Specifically, we address the phenomena of rolling fricti
and sliding, which lead to the loss of mechanical energy a
of linear and angular momentum of the particles. In order
provide a better understanding of the importance of vari
particle and substrate properties that define the system~e.g.,
rolling friction, sliding, and the inertial properties of the pa
ticles!, we concentrate part of the discussion on monod
perse, hard~steel!, perfectly spherical solid particles, movin
on a hard~aluminum, copper! substrate@21–23#. However,
through most of the presentation, the discussion is kep
general as possible, and could be applied to many o
physical systems. Specifically, the extension of the mode
more complicated systems and geometries is of importa
since most of the granular experiments involve some kind
interaction of the particles with~static or dynamic! walls. In
particular, the discussion presented here is relevant to
shearing experiments, where particle-wall interactions are
major importance in determining the properties of the syst
~see@26# and the references therein!.

In Sec. II we explore all of the forces that act on th
particle ensemble on a moving, inclined substrate. First
explore particle-particle interactions and formulate a mo
incorporating the fact that the particles roll on a surface a
have their rotational degrees of freedom considerably mo
fied compared to ‘‘free’’ particles. Further, we include th
interaction of the particles with the substrate, paying att
tion to the problem of rolling friction and sliding. The analy
sis is extended to the situation where the substrate itse
moving with the prescribed velocity and acceleration. B
cause of the complexity of the interactions that the partic
experience, we first consider the problem of particles mov
without sliding, and include the sliding at the end of th
section. In Sec. III, we give the equations of motion for
particle that experiences collisions with other particles,
751 ©1999 The American Physical Society
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752 PRE 60LJUBINKO KONDIC
well as interaction with the substrate. In Sec. IV, we ap
these equations of motion to the simple case of partic
moving in one direction only. It is found that many interes
ing effects could be observed in this simple geometry.
particular, we explore the effect of sliding both during a
after the collisions, and give estimates for the experime
conditions that lead to sliding. Finally, we give the results
the time the particles slide after a collision, as well as for
sliding distance and for the loss of the translational kine
energy and linear momentum of the particles.

II. FORCES ON PARTICLES

Particles moving on an inclined hard surface experie
three kind of forces:~i! Body forces~gravity!; ~ii ! forces due
to collisions with other particles and walls;~iii ! forces due to
interaction with the substrate. In what follows we analy
each of these forces, with emphasis on understanding
interaction between the substrate and the particles. While
analysis is kept as general as possible, some approxima
appropriate to the problem in question are utilized in orde
keep the discussion tractable. In particular, the coefficien
rolling friction is assumed much smaller than~static and ki-
nematic! coefficients of sliding friction. Further, in this sec
tion the particles are confined to move on the substrate w
out jumping; the experimental conditions under which t
extra degree of freedom is introduced are discussed in
IV. Throughout most of this section it is assumed that
particles are moving on the substrate without sliding; in S
II C 3 we explain the conditions for sliding to occur.

In order to formulate a model that can be used for e
cient molecular-dynamics simulations, we choose rat
simple models for the interactions between the particles
between the particles and the substrate. In modeling c
sions between particles, we neglect static friction, as is o
done@27–32#. On the other hand, the static friction betwe
the particles and the substrate is of major importance, sin
leads to rolling particle motion; consequently, it is includ
in the model.

A. Body forces

Here we consider only the gravitational force that acts
the center of mass of the particles. It is assumed that th
are no other~e.g., electrostatic! long-range forces. In the co
ordinate frame that is used throughout~see Fig. 1!, the ac-
celeration of a particle due to gravity,g, is

FIG. 1. Coordinate frame used in the paper.
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aG52 ĵg sin~u!, ~1!

whereu is the inclination angle.

B. Collision forces

There are many approaches to modeling collision inter
tions between particles~see, e.g.,@29,33# and references
therein!. We note that rather complex models have been
veloped@34–42#, but we choose to present a rather simp
one, which, while necessarily incomplete, still models re
istically collisions between particles moving with velocitie
considered in this paper~typically between 1 cm/s and 10
cm/s; see Sec. IV and Appendix B!.

In the context of the particles moving on a substrate, i
important to realize that, even though particles are confi
to move on a two-dimensional~2D! surface, the 3D nature o
the particles is of importance. Even if one assumes that
particles roll on a substrate without sliding, only two com
ponents (x and y) of their angular velocity,V, are deter-
mined by this constraint. The particles could still rotate w
Vz, which could be produced by collisions~hereafter we use
V to denote the components of angular velocity in thex
2y plane only!. We will see that rotations of the particle
influence the nature of their interaction, as well as the int
action with the substrate.

Normal force. Using a simple harmonic spring mode
@29,30,33#, the normal force on particlei, due to the collision
with particle j, is given by

FN
c 5@k~d2r i , j !2gNm̄~vi , j•n̂!#n̂, ~2!

where k is a force constant,r i , j5ur i , j u, r i , j5r i2r j , n̂
5r i , j /r i , j , vi , j5vi2vj , m̄ is the reduced mass, andd5Ri
1Rj , whereRi andRj are the radii of the particlesi and j,
respectively. In this paper, we assume monodisperse
ticles, so thatRi5Rj5d/2. The energy loss due to inelastic
ity of the collision is included by the damping constant,gN .
The damping is assumed to be proportional to the rela
velocity of the particles in the normal direction,n̂. While we
use this simple linear model, the parametersk and gN are
connected with material properties of the particles usin
nonlinear model~see Appendix B!. We note thatgN is con-
nected with the coefficient of restitution,en , by en
5exp(2gntcol/2). Here,tcol is the collision time and is ap
proximately given bytcol'pAm/(2k) ~see Appendix A!.
More realistic nonlinear models which lead to a coefficie
of restitution that is velocity@35,40–42# or mass@43# depen-
dent are discussed in Appendix B.

Tangential force in the x-y plane.The motion of the par-
ticles in the tangential direction~perpendicular to the norma
direction, in thex-y plane! leads to a tangential~shear! force.
This force opposes the motion of the interacting particles
the tangential direction, so that it acts in the direction tha
opposite to the relative tangential velocity,v rel

t , of the point
of contact of the particles. Both translational motion of t
center of mass and rotations of the particles with compon
of angular velocity in thek̂ direction contribute tov rel

t , thus

v rel
t 5vi , j• ŝ1R~V i

z1V j
z!, ~3!
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PRE 60 753DYNAMICS OF SPHERICAL PARTICLES ON A . . .
whereŝ5(n̂• ĵ ,2n̂• î). We model this force~on the particle
i ) by @29,30#

FS
c5sgn~2v rel

t !min~gSm̄uv rel
t u,nsuFN

c u!ŝ. ~4!

Here the Coulomb proportionality between normal and sh
~tangential! stresses requires that the shear force,uFS

cu, is lim-
ited by the product of the coefficient of static friction b
tween the particles,ns , and the normal force,uFN

c u. The
damping coefficient in the tangential~shear! direction,gS , is
usually chosen asgS5gN/2, so that the coefficients of rest
tution in the normal and shear directions are identical@30#
~see@41# for more details!. An alternative method, where on
models shear force by introducing a ‘‘spring’’ in the tange
tial direction and calculates the force as being proportiona
the extension of this spring, has been used as well~see, e.g.,
@33,34#!. We neglect static friction~see@27–32,41,44,45# for
the discussion of validity of this approximation!.

The torque on the particlei due to the forceFS
c is T i5xi

3FS
c , wherexi is the vector from the center of the particlei

to the point of contact, soxi52Rn̂. This torque produces
the angular acceleration of the particlei in the k̂ direction,

V̇ i
z5Ti

z/I 52R/I n̂3FS
c , whereI is the particles’ moment o

inertia. Recalling thatFS
c is defined by Eq.~4!, one obtains

~we drop subscripti hereafter, if there is no possibility fo
confusion!

V̇z52
R

I
uFS

cusgn~v rel
t !. ~5!

By direct integration, this result yieldsVz. With this, the
relative velocity,v rel

t @Eq. ~3!#, is given, and hence we ca
calculate the tangential~shear! force,FS

c .

Tangential force in thek̂ direction. Since the particles are
rolling, there is an additional force due to the relative moti
of the particles at the point of contact in the perpendiculark̂,
direction. Figure 2 gives a simple example of the collision
two particles with translational velocities in theî direction
only. We model this force,FR

c , which is due to rotations o
the particles with angular velocity,V, in the same manner a
the shear force,FS

c . The force,FR
c , on the particlei due to a

FIG. 2. The collision between two particles, with the linear v

locities in theî direction only. The direction ofFR
c follows from the

assumption thatuvj u.uvi u. The friction forcef is explained in the
following section.~The particlesi and j are assumed to be in con
tact; for clarity reasons we show them separated!.
ar

-
to

f

collision with the particlej acts in the direction opposite t
the k̂ component of the relative velocity of the point of co
tact. Similar to the ‘‘usual’’ shear force, we assume that
magnitude ofFR

c cannot be larger than the normal force tim
the Coulomb coefficient; thus

FR
c 5sgn~2v rel

z !min~gsm̄uv rel
z u,nsuFN

c u!k̂, ~6!

and, for a general collision,v rel
z 5R@(Vi1Vj )3 k̂#•n̂. In the

case of a central collision as shown in Fig. 2,v rel
z simplifies

to

v rel
z 5R~Vi1Vj !• ĵ . ~7!

The torque acting on the particlei due to this force isT5x
3FR

c . This torque produces an angular accelerationV̇
5T/I . Assuming that there is no sliding of the particles wi
respect to the substrate, we obtain the following result for
linear acceleration of the particlei:

aR
c 5RV̇3 k̂5

R2uFR
c u

I
sgn~2v rel

z !n̂. ~8!

A 2D example given in Fig. 2 shows thataR
c of both par-

ticles, i and j, is in the2 î direction.
Let us also note that the forceFR

c modifies the normal
force, FN , with which the substrate acts on the partic
From the balance of forces in thek̂ direction, it follows that
the normal force is given by

FN5mgk̂ cos~u!2FR
c . ~9!

The ‘‘jump’’ condition mgk̂ cos(u)5FR
c is discussed in more

detail in Sec. IV. Here we assume nonzeroFN , and consider
only the motion in thex-y plane.

To summarize, the collision interactions of the particlei
with the particlej lead to the following expression for th
total acceleration of particlei ~in the x-y plane!:

ac5aN
c 1aS

c1aR
c , ~10!

where

aN
c 5

1

m
@k~2R2r i , j !2gNm̄~vi , j•n̂!#n̂ ,

aS
c5

1

m
min~gSm̄uv rel

t u,nsuFN
c u!sgn~2v rel

t !ŝ,

aR
c 5

R2

I
min~gsm̄uv rel

z u,nsuFN
c u!sgn~2v rel

z !n̂.

HereaN
c is the acceleration due to the normal force given

Eq. ~2!, aS
c is the tangential acceleration due to the sh

force, given by Eq.~4!, andaR
c is the rotational acceleration

due to the tangential force in thek̂ direction, given by Eq.
~6!.
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C. Interaction with the substrate

The theory of rolling and sliding motion of a rigid body
even on a simple horizontal 2D substrate, is complicated.
example, even though the question of rolling friction w
addressed long ago@3#, more recent works@4–10# show that
there are still many open questions about the origins of r
ing friction; a similar observation applies to sliding friction
In order to avoid confusion, we use the term ‘‘friction’’ t
refer to either static or kinematic~sliding! friction; rolling
friction is considered separately. In this paper, we cons
the motion on a macroscopically smooth surface—the m
tion of a single particle on a ‘‘bumpy’’ surface is analyzed
@46#.

We approach this problem in several steps. After the
troduction of the problem, we first consider a particle rolli
without sliding, with a vanishing coefficient of rolling fric
tion, m r . Next we present the generalization that allows
nonzerom r , as well as for the possibility of sliding. Th
substrate is assumed to move with its own prescribed ve
ity, vS , and acceleration,aS , which could be time dependen
The generalization to space-dependentvS andaS is straight-
forward, but it is not introduced for simplicity. Similarly, w
assume that the substrate is horizontal; the generalizatio
an inclined substrate is obvious.

Figure 3 shows the direction of the forces acting on
rolling particle. The friction forcef that causes the particle t
roll acts in such a direction to produce the torque,T, in the
direction of the angular acceleration of the particle. Assu
ing that this friction force is applied to the instantaneo
rotation axis, it does not lead to a loss of mechanical ene
as pointed out in@8#. If m r is zero, the particle will roll
forever on a horizontal surface.

On the other hand, the rolling friction force,fr , acts in
such a way to oppose the rotations. Thus it produce
torque,Tr , in the direction opposite to the angular veloci
of the particle. This torque could be understood if one
sumes a small deformation of the substrate and/or part
which modifies the direction of the rolling friction~reaction!
force, fr , applied to the particle at a point slightly in front o
the normal to the surface from the particle’s center@7–9#.
We note that this reaction force is actually our usual norm

FIG. 3. The forces and torques resulting from particle-subst
interaction. The friction force,f, produces the torque,T, in the
direction of the angular acceleration of the particle; the rolling fr
tion force,fr , produces the torque,Tr , in the opposite direction, so
that it leads to the decrease of the particle’s angular velocity,V.

The deviation offr from the k̂ direction has been greatly exagge
ated for the case of hard~e.g., metal! spherical particles.
or
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force, FN . While we include the rolling friction in the dis-
cussion, we neglect the small modification of the norm
force due to the effect of rolling friction.

1. Rolling without sliding and without rolling friction

In this work, we ignore the complex nature~see, e.g.,
@1,2#! of the friction force, and assume that there is a sin
contact point between a particle and the substrate, with
friction force, f, acting on the particle in the plane of th
substrate, in the direction given by Newton’s law. In order
calculate the acceleration of the particle, we use the sim
method given in@10#. The approach is outlined here, since
the later sections we will use the same idea in the m
complicated settings.

If the substrate itself is moving, the friction force

f5ma ~11!

is responsible for the momentum transfer from the subst
to the particle, wherea is the particle acceleration. This forc
produces a torque~see Fig. 3!

T52Rk̂3f5I V̇, ~12!

whereV̇ is the angular acceleration of the particle. Assu
ing that there is no sliding, the velocity of the contact point
equal to the velocity of the substrate,vS ~this constraint will
be relaxed in Sec. II C 3 in order to model the more gene
case of rolling and/or sliding!,

vS5v1Rk̂3V. ~13!

Multiplying Eq. ~12! by k̂3 and using Newton’s law, we
obtain

a5
I

mR
k̂3V̇. ~14!

Taking a time derivative of Eq.~13!, and combining with Eq.
~14!, one obtains the following result for the acceleration
the center of the mass of the particle:

a5
1

11
mR2

I

aS . ~15!

Since for a solid spherical particleI 52/5mR2, we obtaina
52/7aS . So, the acceleration of a solid particle moving wit
out rolling friction, or sliding, on a horizontal surface, is 2
of the acceleration of the surface,aS @10#.

2. Rolling without sliding with rolling friction

The rolling friction leads to an additional force, respo
sible for slowing down a particle on a surface. As alrea
pointed out, this force produces a torque,Tr ~see Fig. 3!, in
the direction opposite to the angular velocity of the partic
V. The origins of this force are still being discussed. T
effects such as surface defects, adhesion, electrostatic i
action, etc., that occur at the finite contact area between
particle and the substrate@6#, as well as viscous dissipatio
in the bulk of material@4,5,7# have been shown to play

te
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role. Fortunately, for our purposes, we do not have to und
stand the details of this force, except that it decreases
relative velocityv̄5v2vS of the particle with respect to th
substrate. The acceleration of the particle due to this fo
aR , is given by

aR52
m r~ uv̄u!uFNu

m
v̂̄, ~16!

where the coefficient of rolling friction,m r(uv̄u), is defined
by this equation,vR5 v̄uv̄u, andFN is the normal force. Alter-
natively, one could define the coefficient of rolling friction a
the lever hand of the reaction forcefr shown in Fig. 3@8#; for
our purposes, the straightforward definition, Eq.~16!, is
more appropriate. For the case of steel spherical parti
rolling on a copper substrate, the typical values ofm r are of
the order of 1023 @21,22#. Realistic modeling of the experi
ments where rolling friction properties are of major impo
tance~such as a recent experiment@22#, which explores a
system consisting of two kinds of particles, distinguished
their rolling friction! requires accounting for the velocity de
pendence ofm r5m r(uv̄u).

We note that there is an additional ‘‘drilling’’ friction
force, which slows down the rotations of the particles arou
their vertical axes. This friction arises from the finite conta
area between the particles and the surface. While this a
tional force is to be included in general, we choose to neg
it here, since for the experimental situation in which we a
interested@21,22#, the collisions between particles occur on
time scale that is much shorter than the time scale on wh
this rotational motion is considerably slowed down by t
action of this frictional force~for other experimental sys
tems, e.g., rubber spheres, this approximation would be
realistic!.

To summarize, a particle rolling without sliding on a ho
zontal surface experiences two kind of forces. First, the s
face transfers momentum to the particle, ‘‘pulling’’ it in th
direction of its own motion and leading to the acceleratio
a, given by Eq.~15!. Second, due to the rolling friction, th
particle is being slowed down, i.e., it is being accelera
with the acceleration,aR , in the direction opposite to the
relative velocity of the particle and the substrate.

3. Rolling with sliding

Finally we are ready to address the problem of slidin
Sliding of a particle that is rolling on a substrate occurs wh
the magnitude of the friction force, resulting from Eq.~11!,
reaches its maximum allowed valueufmaxu, where

ufmaxu5msuFNu . ~17!

HereFN is the normal force with which the substrate acts
a particle in the perpendicular,k̂, direction, andms is the
coefficient of static friction between a particle and the su
strate. Once the condition~17! is satisfied, the friction force
has to be modified, since now this force arises not from
static friction, but from the kinematic one. The direction of
is opposite to the relative~slip! velocity of the contact point
of a particle and the substrate,ū. Hereū5u2vS , whereu is
the velocity of the contact point. The magnitude off is equal
r-
he

e,

es

y

d
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ct
e
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r-
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d

.
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e

to the product of the normal force and the coefficient
kinematic~sliding! friction, mk ,

f52mkuFNuuR . ~18!

The typical ranges of values ofms andmk are 0.520.7 and
0.120.2, respectively. In the subsequent analysis we neg
rolling friction, since the rolling friction coefficient,m r , is
two orders of magnitude smaller than bothms andmk .

The condition for sliding if there are no collisions. In this
simple case, the friction force is given by Eqs.~11! and~15!.
From the condition for sliding,ufu5ufmaxu, where ufmaxu is
given by Eq.~17!, we obtain that the sliding occurs if

uaSu>S 11
mR2

I D ms

m
uFNu. ~19!

As expected, if the substrate is accelerated with large ac
eration, a particle slides. On a horizontal surface, the con
tion for sliding is uaSu.u(aS)minu, where u(aS)minu5(1
1mR2/I)msg. For a solid steel sphere,ms'0.5, sou(aS)minu
'1.75 g. We note that this result does not depend on
diameter of a particle.

III. MOTION OF THE PARTICLES

The preceding section gives the results for the forces
the particles experience because of their collisions, as we
because of their interaction with the substrate. Now we c
sider the mutual interaction of these effects and give exp
sions that govern the motion of the particles.

Similarly to before, we consider first the case where
particles roll without sliding. Sliding is included in the se
ond part of the section.

A. Motion without sliding

In this section, we do not include rolling friction, since i
effect is rather weak compared to the effects due to the
lisions and the substrate motion. It is important to note t
this approximation is valid only during the collisions; in b
tween the collisions, the rolling friction force has to be i
cluded, since it is the only active force other than gravity

The linear acceleration of a particle~in the x-y plane! is
given by

ma5FN
c 1FS

c1f1maG , ~20!

where FN
c and FS

c are the forces on a particle due to th
collision, in the normal and tangential directions, resp
tively; f is the friction force andaG is the acceleration due to
gravity. Figure 2 shows a simple 2D example, where,
clarity, FS

c , the rolling friction force, and the rotations, cha
acterized byVz, are not shown. The torque balance@gener-
alization of Eq.~12!# implies that the angular acceleration
a particle is given by

V̇52
R

I
~ k̂3f1n̂3FR

c !, ~21!

where we concentrate only on the rotations in thex-y plane
~the rotations characterized byVz enter into the definition of
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FR
c only!. Following the same approach that led to Eq.~15!,

one obtains the result for the linear acceleration,

ma5

mR2

I
@FN

c 1FS
c1~ k̂•FR

c !n̂1maG#1maS

11
mR2

I

. ~22!

Similarly, one can solve for the friction force,f, that the
substrate exerts on a particle

f52

FN
c 1FS

c1m~aG2aS!2
mR2

I
~ k̂•FR

c !n̂

11
mR2

I

. ~23!

For a solid particle, one obtains

ma5
5

7
@FN

c 1FS
c1~ k̂•FR

c !n̂#1
2

7
m~aS1aG!. ~24!

Equations~22! and~24! effectively combine the accelera
tion due to the substrate motion, Eq.~15!, and the accelera
tion due to the collisions, Eq.~10!. We note that, due to the
interplay between angular and linear motion of the partic
the total acceleration, given by Eq.~22!, is not simply the
sum of the accelerations due to the collisions, gravity, a
the frictional interaction with the substrate.These interac-
tions are effectively coupled, and one should not consi
them separately.

B. Motion with sliding

The condition for sliding follows immediately from Eq
~23!, and from the sliding condition,ufu5ufmaxu @see Eq.
~17!#, yielding

UFN
c 1FS

c2
mR2

I
~ k̂•FR

c !n̂1m~aG2aS!U
11

mR2

I

5msuFNu. ~25!

If this condition is satisfied, thenf is given by Eq.~18!.
Let us concentrate for a moment on the condition for s

ing of a solid particle on a horizontal static substrate, a
neglectFR

c and FS
c . The sliding condition is now given by

uFN
c u5(11mR2/I )msuFNu. As one would expect, this resu

resembles the condition for sliding due to the motion of
substrate, Eq.~19!, since the two considered situations a
analogous~the acceleration of the surface,aS , plays the
same role as the collision force,FN

c , scaled with the mass o
a particle!. Consequently, if the substrate is being accelera
in the direction ofFN

c , a largerFN
c is required to produce

sliding. So, it is actually the relative acceleration of a pa
ticle with respect to the substrate motion, which is relev
in determining the condition for sliding.

The effect of FR
c on the sliding condition is more in

volved. SinceFN is connected withFR
c via Eq.~9!, FR

c modi-
fies both sides of Eq.~25!. The net effect ofFR

c is discussed
in some detail in Sec. IV.
s,

d

r

-
d

e

d

t

If the sliding condition, Eq.~25!, is satisfied, one has to
relax the no-slip condition, Eq.~13!. Instead of the no-slip
condition, we have

u5v1Rk̂3V. ~26!

If u5vS , the sliding velocity, ū5u2vs , vanishes. The
equation for the ‘‘sliding acceleration,’’uG ~relative to the
acceleration of the substrate,aS), follows similarly to Eq.
~22!,

muG5S 11
mR2

I D f1FN
c 1FS

c2
mR2

I
~ k̂•FR

c !n̂1m~aG2aS!.

~27!

To summarize, the linear acceleration of a particle
given by Eq.~20!, where the normal force,FN

c , is given by
Eq. ~2! and the tangential force,FS

c , by Eq.~4!. If there is no
sliding, then the friction force,f, is given by Eq.~23!; on the
other hand, if the sliding condition, Eq.~25!, is satisfied,f is
given by Eq.~18!. Further,aS is the acceleration of the sub
strate, andaG , the acceleration due to gravity, is given b
Eq. ~1!. The angular acceleration of a particle,V̇, is given by
Eq. ~21!, where the rotational force due to the collision,FR

c ,
is given by Eq.~6!. Finally, the sliding acceleration,uG , fol-
lows from Eq. ~27!. As mentioned earlier, the acceleratio
due to rolling friction,aR , is not important as long as muc
stronger collision or friction forces are present; it has to
added to the linear acceleration,a, for realistic modeling of
the motion of the particles between the collisions. The ro
tional motion of the particles, characterized byVz, enters
into the model only by modifying the collision force betwee
the particles in the tangential direction,FS

c .
The general expressions given in this section are use

MD-type simulations@24# in order to simulate the motion o
a set of particles on an inclined plane. In this paper, we ap
the results to a simple setting and obtain the analytic res
which provide better insight into the relative importance
various interactions. This is the subject of the next sectio

IV. DISCUSSION

The analysis of the preceding section gives rather gen
results that provide all the information needed for model
of the particles’ motion. On the other hand, the complex
of the final results obscures simple physical understand
In this section, we concentrate on the particular case
plored in recent experiments@21,22#, performed with steel
particles on a metal substrate, and choose parameters a
priate to this situation. This system allows for significa
simplifications, so that we are able to obtain rather sim
analytic results. The assumptions which we use in what
lows are summarized here for clarity.

~i! Particles move just in one,î direction.
~ii ! Particles are rolling without sliding prior to a colli

sion.
~iii ! The relative velocity of the particle prior to a colli

sion, v rel
0 5uvi

02vj
0u, is taken to be in the range 100 cm

.v rel
0 .1 cm/s. It is assumed that the linear force model, E

~2!, is appropriate for these velocities, but a nonlinear mo
is used to determine the approximate expressions for
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force constant,k, and the damping parameter,gN ~Appen-
dixes A and B!. For smaller relative velocities, we will se
that the interaction with the substrate substantially com
cates the analysis. Further, for very small impact velocit
the coefficient of restitution~both in the normal and tangen
tial directions! shows a complicated dependence on the
pact velocity of the particles@40#, which we do not include
in our discussion~see Appendix B!. Still, the considered
range of velocities is the most common one in the exp
ments@21,22#, so we do not consider that this is a serio
limitation ~Ref. @40#, as well as our preliminary experimen
are consistent with the assumption that the coefficient of
titution is constant in the considered velocity range@23#!.

~iv! The particles are assumed to be moving on a horiz
tal, static substrate; the analysis could be easily extende
other situations.

~v! We neglect rolling friction, since its effect is negl
gible during a collision, or as long as the particles slide.

~vi! For simplicity of the presentation, we assume that
particles initially move with velocities in opposite direction
the final results are independent of this assumption. To av
confusion, the particlei is always assumed to be initiall
either static or moving in the2 î direction.

We are particularly interested in answering the followi
questions:

~i! What is the condition for sliding to occur?
~ii ! How long does a particle slide after a collision, a

what is the distance traveled by a particle during this tim
~iii ! How much of the translational energy and linear m

mentum of a particle are lost due to sliding?
In order to fully understand the problem, we start with t

simplest possible situation, and that is a symmetric collis
of two particles moving with same speeds but opposite
locities. Further, we assume the collision to be totally elas
From this simple example, we conclude that the partic
substrate interaction is not importantduring a collision, at
least not for the before-mentioned range of particle velo
ties. Next we look into the case of a more realistic, inelas
collision. Finally, we consider a general inelastic, asymm
ric collision of two particles.

A. Symmetric collisions

Let us concentrate on the first part of a symmetric cen
collision of two particles, and analyze the forces acting
the particlei, as shown in Fig. 4~a!. The only collision force
acting on the particle isFN

c , the substrate is static and hor

FIG. 4. The forces considered in this section (x-z plane!. ~a!
shows the first part of the collision, when the particles are s
moving towards each other, and~b! shows the second part of th
collision. For clarity, only forces on the particlei are shown. The
rotational motion is discussed in the text.
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zontal, and the rolling friction can be neglected. In this ca
Eqs.~20!,~21! and ~27! simplify to

ma5FN
c 1f, ~28!

V̇52
R

I
k̂3f, ~29!

mu̇5S 11
mR2

I D f1FN
c . ~30!

Further, the friction force is given by

f55 2
FN

c

S 11
mR2

I D if ufu,msuFNu

2mkuFNuû otherwise.

~31!

Let us assume that the sliding condition,f5msuFNu, is satis-
fied. By inspecting Eq.~30!, we observe that the first term o
the right-hand side is the one that decreases the sliding
celeration continuously, and possibly brings the particle b
to pure rolling, since it acts always in the direction oppos
to the sliding velocity. Because of the constraint on the fr
tion force given by Eq.~31!, and mk,ms , the right-hand
side of Eq.~30! gives a net contribution in the1 î direction.
So, when sliding begins, the particlei experiences sliding
acceleration in theî direction, leading to the sliding velocity
u, in the same direction, as shown in Fig. 4~a!. In other
words, for this situation, the particlei is still moving to the
left, with angular velocity in the2 ĵ direction, but it is sliding
to the right, with sliding velocityu. Let us also note thatf
slows down the angular motion of the particle, as can be s
by inspection of Eq.~29!. Next, we consider the typical situ
ation during the second part of the collision, when the p
ticles are moving away from each other@Fig. 4~b!#. Analysis
shows that almost all of the conclusions about the situa
depicted in Fig. 4~a! extend to this situation; in particular, th
directions of the sliding velocity,u, and the friction force,f,
are the same.

After understanding this basic situation, it is easier to u
derstand the role of the remaining terms, given in Sec. II
but ignored in Eqs.~28!–~31!. The contributions from grav-
ity and the motion of the substrate are obvious. The anal
of the collision force in the tangential direction,FS

c , is simi-
lar to the one aboutFN

c , since the forces in the normal an
tangential directions could be considered independently.
contribution coming fromFR

c is discussed in the following
sections. We note that in the case shown in Fig. 4~the par-
ticles are initially moving with exactly opposite velocities!,
the contribution fromFR

c vanishes, since it is proportional t

the relative velocity of the point of contact in thek̂ direction.

1. Symmetric elastic collision

Let us define the compression byx5(R2r i , j /2)/R, where
r i , j is the distance between the centers of colliding partic

ll
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FIG. 5. ~a! The maximum compression,xmax; ~b! the minimum compression,xmin
0 , required to produce sliding. Both quantities are sca

with a particle diameter. For inelastic collisions,xmin50 ~see text!.
-
ha
on
/

re

he
el

-

io

he

e

o
th

we

the
tic

ns

es-

x-

s
h
we

for
on
and R is the particle radius (x.0 is required if a collision
occurs!. The maximum compression is given by~Appendix
A!

xmax
0 5

v rel
0

2Rv0
, ~32!

where, for a symmetric collision, the relative velocityv rel
0

52v0, andv0 is the initial speed of the particles. For sim
plicity, we use scalar notation and the sign convention t
the1 sign of the translational velocities refers to the moti
in the1 î direction, and the1 sign of the angular velocities
accelerations to the rotations in1 ĵ direction. In obtaining
Eq. ~32!, it was assumed that only the collision forces a
important in determiningxmax

0 . More careful analysis given
in Appendix D provides justification for this assumption. T
natural frequency,v0, associated with the linear force mod
specified by Eq.~2! is given byv0

252k/m. It is related to the
duration of the collision viatcol5p/v0. The nonlinear force
model ~see Appendix B! predicts thatv0 very weakly de-
pends onv rel

0 ; we observe that typicallyv0'1025 s, so that
for v rel

0 '10 cm/s,xmax
0 '231024. Figure 5~a! shows the de-

pendence ofxmax
0 on the relative initial velocity of the par

ticles.
It is of interest to estimate the range of the compress

depths for which the sliding condition,ufu5msuFNu, is satis-
fied, leading to sliding of the particles with respect to t
substrate. Sliding occurs whenuFN

c u>(11mR2/I )msmg @see
Eq. ~31!#. Using the expression for the normal force, Eq.~2!,
we obtain that this condition is satisfied forxmax

0 >xslip

>xmin
0 , where~see Appendix C!

xmin
0 5S 11

mR2

I D msg

2Rv0
2 . ~33!

Using the values of the parameters as specified in App
dixes B and C, we note that forv rel

0 '10 cm/s, xmin
0 '3

31027. For R52 mm,xmin
0 is on an atomic length scale, s

we conclude that a particle slides during almost all of
course of a symmetric, elastic collision. The results forxmin

0

t

n

n-

e

are shown in Fig. 5~b!. The dependence ofv0 on v0 ~see
Appendix B!, leads to the increased values ofxmin

0 as v0

→0.
The compression,xmin

0 , is reached at timetmin
0 , measured

from the beginning of the collision~see Appendix C!

tmin
0 5S 11

mR2

I D msg

v rel
0 v0

2
. ~34!

For the choice of parameters as given in Appendix B,
obtaintmin

0 '1028 sec, andtmin
0 /tcol'531024, confirming our

conclusion that sliding with respect to the substrate is
dominant motion of the particles during a symmetric, elas
collision.

From Eq.~33! we can also deduce under what conditio
sliding occurs. Obviously, we require thatxmin

0 ,xmax
0 . Using

Eqs.~32! and~33!, we obtain that the initial velocities of the
particles have to satisfyv rel

0 @vb, where~see Appendix C!

vb5S 11
mR2

I D msg

v0
. ~35!

For the set of parameters given in Appendix B, this expr
sion yields a very small value,vb'1022 cm/s. So, sliding
occurs during almost all collisions occurring in typical e
periments@21,22#.

Let us now look into the rotational motion of the particle
during a collision. The friction force is the only one whic
produces angular acceleration. Without loss of generality,
consider the particlei, which is assumed to move initially in
the 2 î direction, with angular velocityV i

052v0/R. Inte-
grating over the duration of the collision gives the result
the angular velocity of the particle at the end of the collisi
~at t5tcol) ~see Appendix E!,

V i
f 05V i

01
mR

I

g

v0

3Fpmk1S 11
mR2

I D msg

v rel
0 v0

S 1

2
ms2mkD G . ~36!
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The sliding velocity of the particlei at t5tcol , ui
f 05v0

2RV i
f 0 @see Eq.~26!#, now follows,

ui
f 05v rel

0 2
mR2

I

g

v0

3Fpmk1S 11
mR2

I D msg

2v rel
0 v0

S 1

2
ms2mkD G . ~37!

This is an important result, since the sliding velocity of
particle at the end of a collision determines the energy
momentum loss due to the sliding after the collision. Us
the parameters as in Appendix B, we note that the contr
tion of the second term in Eq.~37! is approximately
0.01 cm/s. So, we conclude that the frictional interaction
a particle with the substrateduring a collision only very
weakly influences the sliding velocity of a particle at the e
of the collision. Similarly, the angular velocity is onl
slightly modified, as shown in Fig. 4.A particle exits an
elastic, symmetric collision with an angular velocity which
almost equal to its initial angular velocity, resulting in
sliding velocity equal to twice its initial translational veloc
ity.

The fact that the particle-substrate interaction is negligi
during a collision follows also from a simple energy arg
ment. Figure 5 shows that the maximum compression de
is of the order of 1024, in units of the particle diameter. So
the order of magnitude of the ratio of the energies involv
in the particle-substrate interaction,Ep-s'2msmgRxmax, and
of the energy involved in the collision itself,Ecoll
'2k(Rxmax)

2, is given by

Ep-s

Ecol
'

msmgv rel
0 tcol

m~v rel
0 !2

'
gtcol

v rel
0

, ~38!

where Eq.~32! has been used. Forv rel
0 510 cm/s, we obtain

Ep-s/Ecol'231023. Clearly, for all collisions characterize
by very short collision times~equivalently, small maximum
compression depths!, this ratio is a very small number, as
suming common particle velocities. Correspondingly,
particle-substrate interactionduring a collision influences the
dynamics very weakly. Considerable modification of this
timate could be expected in the case of ‘‘softer’’ collision
where both the duration of a collision and maximum co
pression depth are much larger.

2. Symmetric inelastic collision

Inelasticity of a collision introduces a damping paramet
gN , which is related to the material constants in Appendix
A and B. The damping is directly connected with the co
ficient of restitutionen by gN522/tcol ln(en) ~Appendix~B!.
The collisions of steel spheres are rather elastic~typically
en'0.9), so we are able to introduce a small parametee
5gN /v0'22/p(12en)!1. In what follows, we perform
consistent perturbation expansions of the equations of
tion, and include only the corrections of the orderO(e). For
completeness, we also include the terms due to the inte
tion with the substrate, even though we have already sh
that this interaction is not of importance for the physic
situation in which we are interested.
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The maximum compression is now given by~see Appen-
dix A!

xmax5
v rel

0

2Rv0
S 12

p

2
e1O~e2! D . ~39!

Figure 5~a! shows the result forxmax, for a few values ofen ,
using the parameters given in Appendix B. In Appendix B
is shown that thev0 and tcol are weakly dependent on th
initial velocity @ tcol;(v0)21/5#, so that the results for the
maximum compression scale with the initial velocity
xmax;(vrel

0 )4/5, resulting in the slight curvature of thexmax

curves in Fig. 5~a!. In Appendix C it is shown that for in-
elastic collisions, the time,tmin , at which sliding starts goes
to zero, since the corrections due to damping are typic
stronger than corrections due to the particle-substrate in
action. Consequently, the angular acceleration, given by
~29!, is constant during the whole course of the collision. F
the particlei, V̇ i5mkgmR/I , so that at the end of the colli
sion (t5tcol)

V i
f5V i

01
mR

I

mkgp

v0
'V i

0 , ~40!

whereV i
052v0/R. The sliding velocity of the particlei at

t5tcol is given by@see Eq.~26!#

ui
f5

1

2
~11en!v rel

0 2
mR2

I

mkgp

v0
'

1

2
~11en!v rel

0 . ~41!

Similar to the discussion following Eq.~37!, we observe that
the friction during a collision leads to negligible correction
In what follows, we ignore these corrections, and assu
V i

f5V i
0 andui

f5(11en)v rel
0 /2.

3. Sliding after a symmetric collision

The particle i exits a symmetric collision with transla
tional velocityv i

f5env05env rel
0 /2 ~in the 1 î direction! and

with sliding velocityui
f , given by Eq.~41!. After the colli-

sion, it experiences a friction force, resulting in the slidi
accelerationu̇i52(11mR2/I )mkg, as follows from Eq.
~30!, whereFN

c is now absent. This friction force is present
long as the sliding velocity is nonzero. It slows down t
particle and leads to the corresponding loss of the tran
tional kinetic energy and linear momentum. Neglecting ro
ing friction, we obtain the result for the time,ts, measured
from the end of the collision, when sliding stops~due to the
symmetry, this result is the same for both colliding particle!,

ts5
ui

f

uu̇i u
5

1
2 ~11en!v rel

0

mkgS 11
mR2

I D . ~42!

The translational velocity of the particlei at the timets, v i
s

5v i(t5ts), is given by
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v i
s5v i

f2mkgts5
1

2
v rel

0

en

mR2

I
21

11
mR2

I

. ~43!

The angular velocity of the particlei at this time isV i
s

5V i(t5ts)5v i
s/R, since the particle does not slide an

more. We observe that the translational motion of the p
ticles is considerably slowed down due to the friction forc
for solid spheres anden50.9, uvk

su'0.36 v0 (k5 i , j ). Equa-
tion ~43! gives that forI /mR2.en , v i

s is negative, meaning
that the particle is movingbackwardsat the time when slid-
ing ceases. For almost elastic collisions of solid partic
this condition is not satisfied, so the particles are still mov
away from the collision point at timets.

Until the timets, each of the particles travels the distan
s away from the point where the collision has taken pla
given by

s5
~v rel

0 !2

8mkgS 11
mR2

I D 2 ~11en!S en2112
mR2

I
enD .

~44!

Figure 6 shows the results forts and s. For v rel
0 510 cm/s

and en50.9, the particles slide during the timets'0.03 s
ands'0.1 cm. These results compare well with prelimina
experiments. More precise analysis and the comparison
experimental results will be given elsewhere@23#.

4. The loss of the translational energy and momentum
due to sliding in a symmetric collision

Let us define the energy loss due to sliding,DĒslip , as the
difference between the translational kinetic energy of a p
ticle just after it has undergone a collision and its trans
tional kinetic energy at timets after the collision~scaled with
the reduced mass!. Therefore,

FIG. 6. The time,ts, until which a particle slides after the co
lision, and the distance,s, traveled during this time. Herev5v0

rel is
the initial relative velocity of the particles. The parameters are
specified in the text.
r-
;

,
g

,
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r-
-

DĒslip5~v f !22~vs!2. ~45!

The relative loss of energy is defined asDEslip5DĒslip /E0,
whereE05(v0)2. We note that very little energy is lost du
to sliding while the collision is taking place. The sliding los
of energy occurs after the collision, and it is equal to t
work done by the friction force. Using Eq.~43!, we obtain
the result for the relative energy loss due to sliding,

DEslip5~11en!

en2112en

mR2

I

S 11
mR2

I D 2 . ~46!

Figure 7~a! showsDEslip for a range of values ofen ~assum-
ing solid spheres!. In the limit of an elastic collision,en
→1, and we obtainDEslip'0.8. So, a solid particle loses
approximately 80% of its initial translational kinetic energ
due to sliding in a completely elastic symmetric collision.

It is also of interest to compare the relative energy lo
due to sliding,DEslip , with the energy loss due to inelasticit
of a collision, DEcol . The latter is simply given byDEcol

5(12en
2) ~we neglect the small loss of energy due to inte

action with substrateduring a collision!, thus

DEcol

DEslip
5S 11

mR2

I D 2 12en

en2112en

mR2

I

. ~47!

The result forDEcol /DEslip is shown in Fig. 7~b!. We ob-
serve thatin the limit of low damping, the sliding is the mai
source of energy loss.This conclusion is independent of th
initial particle velocity or the particle diameter.

Similarly, the linear momentum lost due to sliding in
symmetric collision~relative to the initial momentum! is
given by

Dpslip5
v f2vs

v0
5

11en

11
mR2

I

, ~48!

so ~in an elastic symmetric collision!, a solid particle loses
approximately 60% of its linear momentum because of s

s

FIG. 7. ~a! The loss of the energy and momentum due to slidin
~b! The ratio of the loss of the mechanical energy and linear m
mentum due to inelasticity of a collision (DEcol ,Dpcol), and due to
sliding (DEslip ,Dpslip).
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ing @Fig. 7~a!#. The ratio of the loss of the linear momentu
due to inelasticity of the collision, defined byDpcol5(1
2en), andDpslip , is given by

Dpcol

Dpslip
5S 11

mR2

I D 12en

11en
. ~49!

~We note thatDpcol is the loss of linear momentum of on
particle in the lab frame; inelasticity of the collisions co
serves the linear momentum of a pair of colliding particles
the center-of-mass frame.! This result is shown in Fig. 7~b!.
Similar to the energy considerations, we observe that
small damping,sliding is the main source of momentum los.

B. Asymmetric collisions

Next we consider a central collision between partic
moving with different speeds, such as the one shown in
2. On a horizontal static substrate, Eqs.~21!, ~22!, and ~27!
now simplify to ~index i emphasizes that the particlei is
being considered!

mai5FN,i
c 1f i , ~50!

V̇i52
R

I
~ k̂3f i1n̂3FR,i

c !, ~51!

mu̇i5S 11
mR2

I D f i1FN,i
c 2

mR2

I
~ k̂•FR,i

c !n̂. ~52!

Further, the friction force is given by@see Eqs.~18! and~23!#

f i55 2

FN,i
c 2

mR2

I
~ k̂•FR,i

c !n̂

11
mR2

I

if uf i u,msuFN,i u

2mkuFN,i uûi otherwise.

~53!

The analysis of a symmetric collision, given in Sec. IV
shows that the frictional interaction of the particles with t
substrate during a collision can be neglected. We use
result in the following discussion and neglectf i in the analy-
sis of the collision dynamics of an asymmetric collision. Th
frictional interaction is, of course, included in the analysis
the particles’ motion after a collision, since it is the on
force acting on a particle on a static, horizontal substrate

Normal force is being modified due toFR,i
c , so that

FN,i5~mg2 k̂•FR,i
c !k̂. ~54!

In Appendix E it is shown that, for typical experimental v
locities, the corrections ofFR,i

c due to its cutoff value@see
Eq. ~6!#, can be ignored, since the cutoff leads toO(e2)
corrections of the final angular velocity of the particle. S
we takeFR,i

c to be given by@see Eqs.~6! and ~7!#

FR,i
c 52

gS

2
mR@~Vi1Vj !• ĵ # k̂ ~55!

during the whole course of a collision. The damping para
eter,gS , is kept as a free parameter for generality~usually it
r

s
g.

is

f

,

-

is given a valuegS5gN/2 @30#!. The only constraint ongS is
that gS /v0!1, so that the coefficient of restitution in th
tangential direction is close to 1.

The forceFR,i
c modifies the rotational motion of the pa

ticle i. In Appendix E it is shown that the angular velocity o
the particle at the end of a collision (t5tcol5p/v0) is given
by

Vi
f5Vi

02C~Vi
01Vj

0!, ~56!

where C5pmR2gS /(2Iv0)5O(e)!1. Equation ~56! is
correct to first order ine. Using this result, and the transla
tional velocity of the particlei at t5tcol @Eq. ~A7!#, we ob-
tain the sliding velocity of the particlei at the end of the
collision,

ui
f52

1

2
~11en!~vi

02vj
0!1C~vi

01vj
0!. ~57!

This result generalizes Eq.~41!, which gives the sliding ve-
locity of the particles undergoing a symmetric collision~the
particle-substrate interaction during the collision has be
neglected!. The tangential force,FR

c , leads to the last term in
Eq. ~57!, modifying the sliding velocity in an asymmetri
collision. This modification depends onuvi

01vj
0u, which mea-

sures the degree of asymmetry in a collision.
In order to exemplify the physical meaning of these

sults, let us consider for a moment a completely asymme
case: a particle moving with initial velocityvj

0 and undergo-
ing elastic collision (gN5gS50) with a stationary particlei.
In this case, we obtainvj

f50, uj
f52vj

0 . So, the particlej is
stationary immediately after the collision, but its rotation ra
is unchanged~since in the limitgS50, FR

c vanishes, and the
interaction with the substrate has been neglected!, so that it
has a sliding velocity equal to the negative of its initial v
locity. Let us now consider the particlei. Its translational
velocity and sliding velocities are the same,vi

f5ui
f5vj

0 ,
since immediately after the collision this particle has t
translational velocity equal to the initial velocity of the pa
ticle j, but zero rotation rate.

‘‘Jumping’’ of the colliding particles. Let us finally ad-
dress the assumption that the particles are bound to mov
the substrate. From Eq.~54! we observe that, for large pos
tive k̂•FR

c , this assumption could be violated. The estimate
given in Appendix F, where it is indeed shown that a parti
colliding with a slower particle typically detaches from th
substrate. Fortunately, the motion of a detached particle
the k̂ direction is limited by very small jump heights, so th
the modifications of the results for the dynamics of the p
ticles in thex-y plane are negligible. On the other hand, t
fact that a particle is not in physical contact with the su
strate during a collision simplifies the analysis of the co
sion dynamics, since particle-substrate interaction is
present. We note that we are not aware that detachmen
been observed in the experiments performed with s
spheres moving with moderate speeds@21,22#. Since this ef-
fect provides direct insight into a collision model, it wou
be of considerable interest to explore these predictions
perimentally.
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1. Sliding after an asymmetric collision

After a collision, the particles experience a friction forc
which produces the sliding acceleration and modifies
translational velocity. Figures 8–11 show the results for
time that the particles spend sliding, for the sliding distan
and for the changes in their translational kinetic energy
linear momentum. All of these results depend only on
sum and difference of the initial velocities of the particle
We define

vm5~vi
02vj

0!• î , vp5~vi
01vj

0!• î , ~58!

and show the dependence of our results on these two q
tities. Since some of the approximations involving the ro
tional motion of the particles during collisions~see Appendix
E! are not valid in the limituvmu!uvpu, we do not consider
the caseuvmu'0 ~which occurs when the initial velocities o
the particles are almost the same!. This is the only imposed
restriction.

Using the result for the sliding velocity of the particlei,
Eq. ~57!, and Eq.~52! for the sliding acceleration~the colli-
sion forces are now absent!, we obtain the time when the
sliding of the particlei stops~measured from the end of
collision!,

t i
s5

uui u

uu̇i u
5

u 1
2 ~11en!~vi

02vj
0!2C~vi

01vj
0!u

S 11
mR2

I Dmkg

. ~59!

Figure 8 shows the result for the sliding time for fixeden and
C, as a function ofvm and vp . For vp50, we retrieve the
results for the symmetric collision, shown in Fig. 6. We o
serve thatt i

s just very weakly depends onvp ; this depen-
dence disappears in the limit of zero tangential dampingC
50), as can be seen directly from Eq.~59!.

The translational particle velocity att5t i
s is vi

s5vi(t

5t i
s)5vi

f1ai t i
s , whereai52mkgûi

f . Using Eqs.~52!, ~57!
and ~A7!, we obtain

FIG. 8. The sliding timets of the particlei. The solid line shows
the result for a symmetric collision. Hereen50.9 andC50.13.
,
e
e
,
d
e
.

n-
-

-

vi
s5

1

2S 11
mR2

I D F ~vi
01vj

0!S 11
mR2

I
22CD2~vi

02vj
0!

3S en

mR2

I
21D G . ~60!

During the timet i
s , the particlei translates for the distanc

usi u from the collision point, wheresi5(vi
f1vi

s)t i
s/2. Figure 9

shows usi u; contrary to the sliding timet i
s , the sliding dis-

tance does depend strongly on the asymmetry of a collis
This dependence is present sinceusi u is a function of both
translational and sliding velocities of the particlei. On the
other hand,t i

s depends strongly only on the sliding veloci
of the particle.

An interesting effect can be observed in Fig. 9: there i
particular combination of the initial particle velocities th
gives vanishing sliding distance. The meaning of this res
is that the particle returns to its initial position exactly at t
time t i

s after the collision; this occurs whenvi
s52vi

f . Using
Eqs.~60! and ~A7!, we obtain the condition for zero sliding
distance in terms of the initial velocities of the particles,

vi
05

~en12!S 11
mR2

I D1en

mR2

I
22C

~en22!S 11
mR2

I D1en

mR2

I
12C

vj
0. ~61!

For a completely elastic collision of solid particles, we o
tain vi

0526vj
0 . Equation ~61! gives a clear experimenta

prediction which can be used to explore how realistic
collision model is.

2. The change of the translational kinetic energy
and momentum due to sliding

In this section we give the final results for the change
the translational energy and the linear momentum of the p
ticles due to sliding after a collision. These results assu

FIG. 9. The sliding distances of the particlei (usi u in the text!.
The solid line shows the result for a symmetric collision (en50.9
andC50.13).
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PRE 60 763DYNAMICS OF SPHERICAL PARTICLES ON A . . .
that the particles slide the whole distances, so that there are
no other collisions taking place while the particles travel t
distance. Consequently, for a system consisting of many
ticles ~as in @21,22#!, the change of the translational ener
due to sliding depends on the distance traveled by the
ticles in between of the collisions,l. When l is on average
much larger than the sliding distance,s, one could consider
modeling the effect of sliding using an ‘‘effective’’ coeffi
cient of restitution@21#, which we derive below. In this case
we find that this ‘‘effective’’ coefficient of restitution,en

eff ,
depends only on the usual restitution coefficient,en , and on
the geometric properties of the particles. On the other ha
if l's, this ‘‘effective’’ coefficient of restitution will depend
also on the local density and velocity of the particles. T
effect is explored in more detail in@24#.

We note that in our analysis we assume thaten itself is a
constant; possible velocity or mass dependence ofen
@35,40–43# would lead to an additional velocity~or mass!
dependence ofen

eff . However, the formulation ofen
eff does

not depend on the assumption thaten is a constant, since i
involves the motion of the particlesafter a collision only.
~We have shown that for almost elastic collisions which
consider in this paper, the interaction of the particles with
substrateduring a collision is not of importance. This resu
does not depend onen being a constant, but follows from th
fact that the collision forces are much stronger than
particle-substrate interaction for the considered range of
initial velocities.!

The change of the translational energy of the particlei,

DĒslip
i , is defined asDĒslip

i 5uvi
f u22uvi

su2. The translational
velocity of the particle when it stops sliding,vi

s , is given by
Eq. ~60!, and the velocity of the particle at the end of th
collision, vi

f , is given by Eq.~A7!.

Figure 10 shows the results forDĒslip
i . We chose to show

the total energy change, instead of the relative one, in o
to be able to address the case of an initially stationary p
ticle, characterized byE0

i 50. The solid line shows the resu

FIG. 10. The change of the translational energy of the partici

due to sliding (DĒslip
i in the text!. The solid line shows the resu

applicable to symmetric collisions (en50.9 andC50.13).
s
r-

r-

d,

s

e

e
e

er
r-

for the symmetric case,vp50. From Fig. 10 we observe tha
the loss of energy of the particle strongly depends onvp ,
i.e., on the degree of the asymmetry of the collision. In p

ticular, we observe thatDĒslip
i could attainnegativevalues,

meaning that the particleincreases its translational kinetic
energy due to sliding. In order to illustrate this rather coun
terintuitive point, let us consider for a moment a complete
asymmetric collision, characterized byvj

05v0 î , vi
050. Us-

ing Eqs. ~60! and ~A7!, the change of the energy of th
particle i ~the initially stationary particle!, due to sliding,
easily follows,

DĒslip
i 5

1
2 ~11en!2C

S 11
mR2

I D 2 F ~11en!S 1

2
1

mR2

I D2CG~v0!2.

~62!

SinceC5O(e)!1, DĒslip
i is positive, meaning that the par

ticle i loses its translational energy due to sliding after t
collision. On the other hand, the change of the energy of
particle j ~the impact particle!, due to sliding, is given by

DĒslip
j 52

1
2 ~11en!2C

S 11
mR2

I D 2 F ~12en!S 11
mR2

I D1
11en

2
2CG

3~v0!2. ~63!

The negative sign implies that the particlej gains transla-
tional energy by sliding. The interpretation of this result
simple, in particular in the completely elastic limit,en→1
~also C→0). Since the collision is elastic, the translation
velocity of the impact particlej vanishes immediately afte
the collision with the stationary particlei. But, the particlej
still has the angular velocity,Vj

f , which is ~in the elastic
limit ! equal to its initial angular velocity. Consequently, th
particle j has a sliding velocity, which is, immediately afte
the collision, equal to the negative of its initial translation
velocity. The sliding acceleration resulting from this slidin
velocity induces the motion of the particle in its initial,î ,
direction. The result is that the translational energy of
particlej is being increased by the action of the friction for
between the particle and the substrate after the collision

Still considering a completely asymmetric case, it is
interest to compute the net energy loss of the system of

particles, DĒslip
i , j 5DĒslip

i 1DĒslip
j . By combining Eqs.~62!

and ~63!, we obtain

@DĒslip
i , j #asymm5

1
2 ~11en!2C

S 11
mR2

I D 2 F ~11en!
mR2

I

2~12en!S 11
mR2

I D G~v0!2. ~64!

The net change of the translational energy is positive,
expected, so that the system is losing translational kin
energy. As in the symmetric case, we obtain the relative l
of energy by dividing with the total initial translational ki
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764 PRE 60LJUBINKO KONDIC
netic energy ~scaled with reduced mass!, DEslip
i , j

5DĒslip
i , j /(v0)2. In the completely elastic case, the result f

the relative loss of energy is given by

@DEslip
i , j #elastic

asymm5

2
mR2

I

S 11
mR2

I D 2 . ~65!

Following the same approach, the relative loss of ene
of the system of two particles undergoing a symmetric ela
collision ~scaled with the total initial energy! is given by
@using Eqs.~43! and ~45!#

@DEslip
i , j #elastic

symm5

4
mR2

I

S 11
mR2

I D 2 . ~66!

Comparing Eqs.~65! and~66!, we see that the particles los
twice as much energy due to sliding in symmetric, compa
to completely asymmetric, elastic collisions. The intuiti
understanding of this result follows by realizing that the sl
ing velocities of the particles at the end of a symmetric c
lision, scaled by the initial velocities, are larger, compared
the completely asymmetric case@viz., Eq. ~57!#. The conse-
quence is that the particles that have undergone a symm
collision slide longer and lose more translational ener
WhenCÞ0, the loss of energy due to sliding in an inelas
collision is even smaller, since the particle-particle inter
tion during the collision decreases the angular velocities a
consequently, the sliding velocities of the particles after
collision.

Figure 11 shows the change of momentum due to slid
defined asD p̄slip

i 5(vf
i 2vs

i )• î , so that it measures the chang

of the translational velocity of particlei ~in the î direction!

FIG. 11. The change of the linear momentum of the partici
due to sliding. The solid line shows the result applicable to sy
metric collisions (en50.9 andC50.13).
y
ic
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e

g,

after the collision. Clearly,D p̄slip
i depends very weakly on

the degree of the asymmetry. For completely elastic co
sions,D p̄slip

i depends only on the relative initial velocity o
the particles, and it is given by

~D p̄slip
i !elastic52

1

11
mR2

I

~vi
02vj

0!• î . ~67!

Effective coefficient of restitution. Let us definetm as the
time, measured from the end of a collision, at which neith
of the particles slide any more, so thattm5max(t i

s , t j
s),

wheretk
s (k5 i , j ) is the sliding time of a particle, given by

Eq. ~59!. We define the effective coefficient of restitutio
en

eff , as the ratio of the translational velocities of the partic
at the timetm , and their initial velocities. Using the transla
tional velocity of the particlei, given by Eq.~60!, and the
analogous equation for the particlej, we obtain

en
eff5

uvi2vj us

uvi2vj u0
5

en

mR2

I
21

11
mR2

I

. ~68!

Remarkably enough, this result involves only the ‘‘real’’ c
efficient of restitution and the geometric properties of t
particles. For solid spheres, the difference between the u
coefficient of restitution and the effective one is huge;
en50.9, we obtainen

eff50.36. This value is smaller than th
range reported in@21#, but very close to our experimenta
results for steel particles on an aluminum substrate@23#.
Slight imperfections from the spherical shape in expe
ments, noncentral collisions, and/or the fact that the st
friction between the particles has been neglected in our
culations, might be the reason for this discrepancy.

General remarks.While more precise analysis and mat
rial parameters could be used in order to more precis
model experiments, we consider that the main results
observations given in this section are model-independen
particular, the observation that the sliding is likely to occ
as a consequence of most of the collisions does not dep
on the details of the model. Of course, the results would
modified in the case of more complicated~two-dimensional!
geometry of collisions. Still, the particular geometry of
collision enters into our results for the energy and mom
tum change only through the observation that the frictio
interaction of the colliding particles with the substrate can
ignored during a collision. Since for the system that we co
sider in this work the collision forces are generally mu
stronger than the friction forces resulting from particl
substrate interaction, we do not expect this observation to
modified for more complicated collisions. We do note tha
more realistic model for the particle-particle interactio
~e.g., by including static friction! would introduce modifica-
tions in the expression for the final angular velocity of t
particles, Eq.~56!.

In the experiments@21,22# it is observed that some of th
particles travel for long distances without colliding. Esp
cially in this situation, it is important to include the effect o

-
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PRE 60 765DYNAMICS OF SPHERICAL PARTICLES ON A . . .
rolling friction, which we have ignored in this section. A
long as a particle slides, the effect of rolling friction can
safely neglected, since the coefficient of rolling friction
much smaller than the coefficient of kinematic sliding fri
tion.

V. CONCLUSION

The most important observation made in this work is t
sliding leads to a considerable modification of the trans
tional kinetic energy and linear momentum of the particl
even in the limit of completely elastic collisions. Based
this observation, we give the result for the ‘‘effective’’ coe
ficient of restitution, valid for dilute systems, where the me
free path of the particles in between the collisions is mu
longer than the sliding distance. For more dense systems
conjecture that this ‘‘effective’’ coefficient of restitutio
strongly depends on the local density and velocity of
particles.

The model that we present is to be used in molecu
dynamics~MD! type simulations@24# of an externally driven
system of a set of particles interacting on a horizontally
cillated surface. In particular, we have prepared the grou
for detailed modeling of the system of two kinds of particle
which are characterized by different rolling properties.
@22# it is shown that strong segregation can be achiev
Preliminary MD results, based on the model formulated
this paper, show that the realistic modeling of the partic
particle and particle-substrate interactions are needed in
der to fully understand this effect.

Further, since experiment is the ultimate test for ev
theory, it would be of considerable importance to extend
previous work@17–20# on formulating a continuum theor
for ‘‘2D granular gas.’’ Using the model presented he
should allow for precise comparison between experime
and theoretical results. Possible formulation of realistic c
tinuum hydrodynamic theory applicable to this seemin
simple system would be an important step towards be
understanding of granular materials.
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APPENDIX A: LINEAR MODEL FOR
THE NORMAL FORCE BETWEEN PARTICLES

Let us analyze a simple situation, a central collision
two identical particles,i andj, moving with the velocities,vi

0

andvj
0 , in the î direction only. Here we ignore the interactio

of the particles with the substrate; the importance of t
interaction is discussed in Appendix D. Using this assum
tion, the normal force, given by Eq.~2!, is the only force
acting on the particlei in the normal direction. By combining
the equations of motion for the particlesi and j, we obtain
t
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n
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we
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,
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that the compression depthx5(R2r i , j /2)/R satisfies the fol-
lowing equation:

ẍ1gNẋ1v0
2x50, ~A1!

wheregN is the damping coefficient in the normal directio
andv05A2k/m. We limit our discussion to the case of low
damping, so thate5gN /v0!1.

This equation is subject to the following initial condition
x(t50)50, ẋ(t50)5v rel

0 /(2R). The relative velocity of the
particles att50 is given byv rel

0 5uvi
02vj

0u; for a symmetric
collision, v rel

0 52v0. The solution is

x5

v rel
0

2R

Av0
22S gN

2
D 2

expS 2
gN

2
t D sinFAv0

22S gN

2
D 2

tG .

~A2!

The duration of the collision,tcol , now follows from the
requirementx(t5tcol)50, thus

tcol5
p

Av0
22S gN

2
D 2

5
p

v0
~11O~e2!!. ~A3!

In what follows, we also need the time of maximum com
pression,tmax. From the conditionẋ(t5tmax)50, we obtain

tanFAv0
22S gN

2 D 2

tmaxG5

Av0
22S gN

2 D 2

gN

2

. ~A4!

Expanding toO(e), it follows that

tmax5
tcol

2 S 12
e

p
1O~e2! D . ~A5!

So, the damping manifests itself in a slight asymmetry of
collision, since tmax,tcol /2. The maximum compression
xmax5x(t5tmax), follows using Eq.~A2!. It is given by Eq.
~39! for inelastic collisions, and by Eq.~32! for elastic ones.

We define the coefficient of restitution as the ratio of t
final velocities of the particles relative to their initial veloc
ties, i.e.,en5uvi2vj u f /uvi2vj u0. It follows that

en52
2R

v rel
0

ẋ~ tcol!5expS 2
gN

2
tcolD512

p

2
e1O~e2!.

~A6!

In the limit of low damping,en is close to 1; typically we use
en50.9, appropriate for steel particles@21–23#. Using Eq.
~A3!, we obtaine'22/p ln(en)'0.07.

The final velocity of the particlei ~at the end of the col-
lision! follows from the requirement that the total linear m
mentum is conserved in the center-of-mass frame. It is gi
by
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vi
f5

1

2
@vi

01vj
02en~vi

02vj
0!#. ~A7!

For a symmetric collision, this results simplifies tovi
f

52envi
0 .

APPENDIX B: NONLINEAR MODELS
FOR THE NORMAL FORCE BETWEEN PARTICLES

The linear model, presented in the preceding section
the simplest approximation for the collision interaction b
tween particles. Nonlinear terms, resulting from the final a
of contact and other effects@25,31,32,38,40–42,47–49#,
should be included in order to model the interaction betw
particles more realistically. We use the nonlinear model, o
lined below, in order to connect the values of the paramet
in particular the collision time,tcol , with the material prop-
erties of the particles. The additional complications wh
result from nonlinear models, such as velocity or mass
pendence of the coefficient of restitution, are not conside
in this work. The reader is referred to@35,40–43,48# for
detailed analysis of these effects.

The general, commonly used equation is@31#

ẍ1
hR

m
xgẋ1

ER

m
xb1150, ~B1!

where h and E are the material constants. The choiceg
50, b50.5 leads to the Hertz model~see@40,48# for de-
tailed discussion!. The analysis of this equation gives an e
pression fortcol , which can then be used to determine t
appropriate force constant in the linear model,k, and the
damping coefficient,gN . The result for the collision time is
@31#

tcol'I ~b!S 11
b

2 D 1/21bS m

E~2R!12bD 1/21b

v0
2b/21b .

~B2!

For the Hertz model,I (0.5)52.94. The parameterE is given
by 2Y/@3(12s̃2)#, whereY is the Young modulus ands̃ is
the Poisson ratio. We useY52.0631012 dyn/cm2, and s̃
50.28. For steel spheres with radiusR52 mm, and impact
velocity v0510 cm/s, tcol'2.5531025 sec; for v0
5100 cm/s,tcol'1.6131025 sec. We note that the mode
predictstcol;v0

21/5 andtcol;R. The parameters that enter th
linear model can now be calculated, usingv05p/tcol@1
1O(e2)# andgN522/tcol ln(en).

APPENDIX C: SLIDING DURING COLLISIONS

1. Sliding during a symmetric collision

In Appendixes A and B we obtained the results govern
the dynamics of particle collisions, ignoring the interacti
with the substrate. Here we show that the colliding partic
slide through most of a typical collision. The additional m
terial constants that are involved are the coefficients of st
and kinematic friction between the considered particles
the substrate,ms andmk . In our estimates, we usems50.5
andmk50.1.
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The condition for sliding, Eq.~25!, applied to the simple
situation outlined in Sec. IV A, gives that sliding occu
when uFN

c u>(11mR2/I )msmg. In terms of the compression
depth and velocity, this condition is

Rv0
2x1RgNẋ>

1

2 S 11
mR2

I Dmsg. ~C1!

We note that the left-hand side of this equation is alwa
non-negative, sinceFN

c is always repulsive~at the very end of

a collision, whenx!1, ẋ,0, FN
c is set to 0). In the limit

gN→0, we obtain that sliding occurs whenx>xmin
0 , where

xmin
0 5(11mR2/I)msg/(2Rv0

2). Using the result for the com
pression depth, Eq.~A2!, we obtain the time at which sliding
starts, tmin

0 , measured from the beginning of the collisio
~still in the limit gN→0),

sin~v0tmin
0 !5S 11

mR2

I D msg

v rel
0 v0

. ~C2!

For the initial velocities,v rel
0 , satisfyingv rel

0 @vb, wherevb

5(11mR2/I )msg/v0, it follows that sin(v0tmin
0 )!1. For our

set of parameters, and assuming solid spheres,vb

'1022 cm/s. Therefore, this condition is satisfied for mo
of the collisions. By expanding the sin function in Eq.~C2!,
we obtain

tmin
0 5S 11

mR2

I D msg

v rel
0 v0

2
, ~C3!

and

xmin
0 5S 11

mR2

I D msg

2Rv0
2 . ~C4!

Exploiting the symmetry of an elastic collision, we conclu
that the sliding condition is satisfied fortmin

0 ,t,tcol2tmin
0 .

Next we go to the limit of small but non-zero dampin
and assume that the conditionv0tmin!1 is still valid, where
tmin is now the time when sliding occurs forgNÞ0. Using
gNtmin!v0tmin , we Taylor-expandx and ẋ @given by Eq.
~A2!# at t5tmin , and keep only the first-order terms in sma
quantitiesv0tmin , gNtmin . In this limit,

x~ tmin!'
v rel

0

2R
tmin ; ẋ~ tmin!'

v rel
0

2R
~12gNtmin!. ~C5!

The sliding condition, Eq.~C1!, gives the time when sliding
occurs, for an inelastic collision

tmin5S 11
mR2

I D msg

v rel
0 v0

2
2

e

v0
1O~e2!. ~C6!

We note that there are two factors that contribute totmin : the
frictional interaction with the substrate gives the first term
the right-hand side of Eq.~C6!, and the damping that occur
during a collision gives the second one. For the initial v
locities, satisfyingv rel

0 @vc5gms /gN , the contribution from
the damping is the important one. Using the expression
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gN given in Appendix B, we obtainvc'0.05 cm/s~for en

50.9). This velocity is smaller than the initial velocities co
sidered in this work. Assumingv rel

0 @vc, we conclude that
the friction term could be relevant only in the limiten→1,
sincevc diverges in this limit. Consequently, it follows tha
tmin→0, so that the sliding starts immediately at the beg
ning of an inelastic symmetric collision. Sincetmin→0, the
expansion used to obtain Eq.~C5! is consistent.

2. Sliding during an asymmetric collision

By combining Eqs.~53! and~54!, we obtain the condition
for sliding during an asymmetric collision,

UFN,i
c 2

mR2

I
~ k̂•FR,i

c !n̂U
11

mR2

I

>msumg2FR,i
c
• k̂u. ~C7!

Using Eqs.~2! and ~55! for FN,i
c and FR,i

c , respectively, we
obtain~in terms of the compression depth, see Appendix!

Rv0
2x1RgNẋ>S 11

mR2

I D msg

2
1

gS

4
uv rel

z usgn~2v rel
z !

3FmR2

I
2S 11

mR2

I DmsG , ~C8!

where v rel
z is given by Eq.~7!. From the first part of this

appendix, we already know that the first term on the rig
hand side is negligible. The term inside the square bracke
positive for solid spheres, andms50.5. For largex’s, the
condition, Eq.~C8!, is always satisfied, sinceRv0

2x is the
dominant term. So, we need to explore only the beginn
and end of a collision. If sgn(2v rel

z ),0, the sliding condi-
tion is always satisfied, so that the slower particle alwa
slides. When sgn(2v rel

z ).0, we concentrate on the very be
ginning of the collision, and obtain the condition

gN>
gS

2

uvi
01vj

0u

uvi
02vj

0u
FmR2

I
2S 11

mR2

I DmsG . ~C9!

Since typicallygS5gN/2, this condition is satisfied, assum
ing uvi

01vj
0u'uvi

02vj
0u.

We conclude that the particles entering an asymme
collision slide during the whole course of the collision, e
cept possibly in the caseuvi

02vj
0u!uvi

01vj
0u. We do not con-

sider this case here.

APPENDIX D: MODIFICATION OF COLLISION
DYNAMICS DUE TO THE INTERACTION

WITH THE SUBSTRATE

Here we estimate the importance of the interaction
tween the colliding particles and the substrate during a
lision. In particular, we estimate under what conditions
interaction with the substrate significantly modifies the
sults for the compression depth and the duration of a co
sion. We use the linear model outlined in Appendix A, a
-

-
is

g

s

ic

-
l-
e
-
i-

concentrate on the case of the particles moving on a horiz
tal static substrate.

In Appendix C it is shown that, assuming typical expe
mental conditions, the colliding particles slide relative to t
substrate during most of a collision. For simplicity, here w
concentrate on a symmetric collision, and further assume
the condition for sliding is satisfied throughout the collisio
so that the friction force attains its maximum allowed valu
given by Eq.~18!. By using this approximation, we slightly
overestimate the influence of the friction with the substr
on the dynamics of a collision.

From Fig. 4 we observe that the friction force,f, acts in
the direction opposite to the normal collision force,FN

c . In-
cluding f in the Newton equations of motion for the particle
i and j, we obtain the modified equation for the compress
depth,

ẍ1gNẋ1v0
2x2

mkg

2R
50, ~D1!

which simplifies to Eq.~A1! if the particle-substrate interac
tion is ignored.

Using the initial conditions as in Appendix A, we obta
the solution

x5xf2expS 2
gN

2
t D 5 xf cosFAv0

22S gN

2
D 2

tG

2

v rel
0

2R
2

1

2
xfgN

Av0
22S gN

2
D 2

sinFAv0
22S gN

2
D 2

tG 6 , ~D2!

wherexf5mkg/(2Rv0
2).

Collision time.For simplicity, we concentrate on the cas
of zero damping (gN50) and calculate the change of th
duration of the collision due to the particle-substrate inter
tion. Let us assume that the change of the collision time
small, and writetcol8 5tcol1t, wheretcol5p/v0 is the colli-
sion time if there is no interaction with the substrate, andt
!tcol . Using the conditionx(t5tcol8 )50, and expanding the
compression depth, given by Eq.~D2!, to the first order in
the small quantitytv0, we obtain thatt54xfR/v rel

0 . So, the
relative change of the collision time due to the interacti
with the substrate is given by

tcol8 2tcol

tcol
5

2mkg

pv rel
0 v0

. ~D3!

For v rel
0 @va, whereva'mkg/v0, the change of the collision

time is small. Using the parameters given in Appendixes
and C, we estimateva'1023 cm/s. So, for most of the ex
perimentally realizable conditions, the duration of a collisi
is just very weakly influenced by the particle-substrate int
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action. We assumev rel
0 @va, so thattv0!1, and the expan-

sion of Eq.~D2! is consistent.
Maximum compression depth.Following the same ap

proach, we estimate the modification of the maximum co
pression achieved during a collision, due to the interact
with the substrate. Working in the limit of zero damping, a
assuming a small modification of the time,tmax, when the
maximum compression,xmax8 , is reached, we obtainxmax8
'xf1vrel

0 /(2Rv0). Comparing this result with the result fo
the compression depth calculated previously, given by
elastic limit of Eq.~39!, we obtain

xmax8 2xmax

xmax
52Rv0

xf

v rel
0

5
mkg

v rel
0 v0

. ~D4!

Similar to the analysis of the collision time, we observe th
for v rel

0 @va, the maximum compression depth is very weak
influenced by the particle-substrate interaction.

We conclude that for most of the collisions occurring
experiments, the interaction with the substrate just sligh
modifies the compression depth and the duration of a c
sion. These small modifications are ignored in the sub
quent analysis.

APPENDIX E: ROTATIONS OF THE PARTICLES
DURING A COLLISION

1. Rotations during symmetric collisions

During symmetric collisions, the rotational motion of th
particles is influenced only by the friction force between t
particles and the substrate. Here we consider only ela
collisions, since in Appendix C it is shown that the particl
entering an inelastic collision start sliding immediately,
that the angular acceleration is constant during the wh
course of collision, simplifying the calculations~see Sec.
IV A 2 !. Since there is no possibility of confusion, we u
scalar notation, with the sign convention that the1 sign
corresponds to the forces acting in the1 î direction, and to
the angular motion in the1 ĵ direction ~the coordinate axes
are as shown in Fig. 4!.

At the very beginning of an elastic collision, for 0,t
,tmin

0 @tmin
0 is given by Eq.~C3!#, the colliding particles do

not slide. During this time interval, the angular accelerat
of the particlei, which initially moves in the2 î direction, is
given by

V̇ i5
R

I
f i5

R

I

FN, i
c

11
mR2

I

5

mR

I

11
mR2

I

v rel
0 v0

2t, ~E1!

wherex'tv rel
0 /(2R), and Eqs.~2! and ~31! have been used

Integration yields

V i~ t5tmin
0 !5V i

01
1

2

mR

I S 11
mR2

I D ~msg!2

v rel
0 v0

2
~E2!
-
n

e

t

y
i-
e-

tic

le

n

and V i
052v0/R. For tmin

0 ,t,tcol2tmin
0 , the sliding condi-

tion, uf i u5msuFN,i
c u, is satisfied, so that the angular accele

tion reaches its maximum~constant! value

V̇ i5
mR

I
mkg. ~E3!

For tcol.t.tcol2tmin
0 , the sliding condition is not satisfied

anymore, but the particle is already sliding, so thatV̇ i is still
given by Eq.~E3!. The angular velocity of the particlei at
the end of the collision is

V i
f 05V i~ t5tmin

0 !1
mR

I
mkg~ tcol2tmin

0 !. ~E4!

Combining Eqs.~E2! and ~E4!, we obtain the final result
given by Eq.~36!.

2. Rotations during asymmetric collisions

a. About tangential force

Here we estimate under what conditionsFR
c , given by Eq.

~6!, reaches its maximum allowed value,nsuFN
c u. As men-

tioned in Sec. IV B, here we ignore the frictional interactio
of the particles with the substrate during a collision. F
simplicity, we also neglect the damping in the normal dire
tions, so thatuFN

c u52mRv0
2x ~see Appendix A!. Next, we

note that the relative velocity of the point of contact satisfi
v rel

z (t50).v rel
z (t.0), sinceFR

c always decreasesv rel
z @given

by Eq. ~7!#. In what follows, we usev rel
z (t.0)5v rel

z (t50),
and give the upper limit of the first term entering the defi
tion of FR

c .
Let us first concentrate on large compression depthsx

'xmax5uvi
02vj

0u/(2Rv0) ~see Appendix A!. This compres-
sion is reached att5tmax5p/(2v0). We usev rel

z (t5tmax)
5vrel

z (t50)5uvi
01vj

0u, and obtain thatFR
c reaches its maxi-

mum allowed value if@see Eq.~6!#

gS

2
uvi

01vj
0u>nsv0uvi

02vj
0u. ~E5!

Since gS /v0!1, this condition is never satisfied forns

5O(1) anduvi
01vj

0u'uvi
02vj

0u.
For smallx’s, let us assume againv rel

z (t.0)5v rel
z (t50).

From Eq.~6! it follows thatFR
c reaches its cutoff value whe

x,xcrit, where

xcrit

xmax
5

gS

2nsv0

uvi
01vj

0u

uvi
02vj

0u
5O~e!. ~E6!

Using x'tuvi
02vj

0u/(2R) ~valid for x!xmax), we obtain that
the conditionx,xcrit is satisfied fort,tcrit, where

tcrit

tmax
5

gS

pv0

uvi
01vj

0u

uvi
02vj

0u
5O~e!. ~E7!

In order to calculate the angular velocity of the particlei at
the end of a collision,Vi

f , we have to integrate the angula

acceleration,V̇i , during the course of a collision. The ang
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lar acceleration is proportional toFR
c , as follows from Eq.

~51!, wheref i is being neglected. In performing the integr
tion, it appears that we have to consider separately two
gions: 0,t,tcrit, during whichFR

c varies, andt.tcrit, during
which FR

c is constant. The final angular velocity of the pa
ticle i is formally given by

Vi
f5Vi

01E
0

tcrit

V̇idt1E
tcrit

tcol
V̇idt. ~E8!

This result can be simplified by realizing thatuFR
c u5O(e). It

follows that uV̇i u5O(e), so that the contribution of the sec
ond term on the right-hand side of Eq.~E8! is proportional to
uV̇i utcrit5O(e2). For consistency reasons, we neglect t
correction, and ignore the fact thatuFR

c u could reach Coulomb
cutoff at the very beginning and end of a collision. Th
estimate is not valid foruvi

02vj
0u!uvi

01vj
0u, when the par-

ticles initially move with almost the same velocities. As a
ready mentioned in Appendix C, we do not consider this c
here.

b. The angular velocity of the particles
during an asymmetric collision

Using Eqs.~51! and ~55!, and neglecting the particle
substrate interaction during a collision, we obtain the angu
acceleration of the particlei,

V̇i52
mR2

I

gS

2
@~Vi1Vj !• ĵ # ĵ , ~E9!

and V̇j5V̇i . Recalling thatV̇i and V̇j are always in the
opposite direction fromVi1Vj , we obtain a simple system
of coupled ordinary differential equations

V̇i52C8~Vi1Vj !, ~E10!

V̇j52C8~Vi1Vj !, ~E11!

whereC85mR2gS /(2I ). We defineV15Vi1Vj , so that
V̇1522C8V1 , with the solution

V1~ t !5V1~ t50!exp~22C8t !. ~E12!

At t5tcol , V1(t5tcol)5V1(t50)exp(22C), where C
5C8 tcol5O(e). Recalling that the changes ofVi and Vj
are the same, so thatVk(t5tcol)5Vk(t50)1DV, (k
5 i , j ), the change of the angular velocities is given by

DV5
1

2
$~Vi

01Vj
0!@exp~22C!21#%'2~Vi

01Vj
0!C,

~E13!
e-

s

e

r

correct to first order ine. For gS5gN/2, and the parameter
as in Appendix B,C5pmR2e/(4I )'0.13. The final angular
velocity of the particlei is now given by Eq.~56!.

APPENDIX F: JUMP CONDITION
FOR ASYMMETRIC PARTICLE COLLISIONS

Throughout this work, we have assumed that the partic
are bound to move on the surface of the substrate. Here
explore the validity of this assumption. The required con
tion for a particle to be bound to the substrate is that
normal forceuFNu, given by Eq.~54!, is nonzero. We imme-
diately observe that only a particle colliding with a slow
particle @so that sgn(2v rel

z ),0, see Eq.~7!# experiences a

force in the1 k̂ direction due to a collision. Let us concen
trate on this situation. Using the value ofuFR

c u at t50, we
obtain that a particle detaches from the substrate if

f net5mS gS

2
uv rel

z u2gD.0, ~F1!

where Eqs.~7!, ~54!, and~55! have been used. It follows tha
during the collisions distinguished byuv rel

z u.vd52g/gS , the
faster particle detaches from the substrate. Using the va
of the parameters as in Appendix B, andgS5gN/2, we ob-
tain vd'0.5 cm/s. Correspondingly, this effect takes pla
during most of the asymmetric collisions occurring in typic
experiments@21,22#. By relating the impulse of the forcef net
transferred to a particle while the collision is taking plac
with the change of the momentum of the particle in thek̂
direction, we obtain the estimate for the initial velocity of th
particle in thek̂ direction,

vz5S gS

2
uv rel

z u2gD p

v0
. ~F2!

The maximum height above the substrate which the part
reaches ishz5(vz)2/(2g), and the time spent without con
tact with the substrate istz52vz/g. Let us assume a com
pletely asymmetric collision, so thatuvi

0u5v0, uvj
0u50, and

v rel5v rel
z 5v0. Using the parameters from Appendix B, fo

v0510 cm/s, we obtainvz'0.5 cm/s,hz'1.331024 cm,
and tz'1022 sec. Since the maximum height is muc
smaller than the diameter of the particles, this detachm
introduces negligible corrections to the dynamics of the p
ticle collisions in thex-y plane. Further, even thoughtz

@tcol , so that the particle is not in contact with the substr
during the time that is much longer than the duration of
collision, tz is still much smaller than the sliding time scal
specified by Eq.~59!. So, our results for the sliding of th
particles after a collision are not significantly modified due
the detachment effect.
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