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Dynamics of spherical particles on a surface: Collision-induced sliding and other effects
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We present a model for the motion of hard spherical particles on a two-dimensional surface. The model
includes both the interaction between the particles via collisions and the interaction of the particles with the
substrate. We analyze in detail the effects of sliding and rolling friction, which are usually overlooked. It is
found that the properties of this particulate system are influenced significantly by the substrate-particle inter-
actions. In particular, sliding of the particles relative to the substfter a collision leads to considerable
energy loss for common experimental conditions. The presented results provide a basis that can be used to
realistically model the dynamical properties of the system, and provide further insight into density fluctuations
and related phenomena of clustering and structure formdi&#063-651X99)06507-1

PACS numbgs): 83.10.Pp, 45.05:x, 46.55+d, 45.50.Tn

[. INTRODUCTION and the interaction with the substrate introduce an additional
set of parameter&.q., the coefficients of rolling and sliding
In this paper we address the problem of the motion of driction), which have not been included in the theoretical
set of hard spherical particles on an inclined, in general dyeescriptions of the system.
namic, surface. While there have been substantial efforts to Our goal is to bridge this gap between experiment and
understand in more detail the problem of the nature of intertheory, and formulate a model that includes both particle-
action of a single particle with the substrdte-10], these particle and particle-substrate interactions, allowing for a
efforts have not been extended to the multiparticle situationcomparison between experimental and theoretical results.
On the other hand, there has been recently a lot of interest i8pecifically, we address the phenomena of rolling friction
one-[11-1§ or two-[17-24 dimensional granular systems, and sliding, which lead to the loss of mechanical energy and
as well as in related astrophysical problef85]. These sys- of linear and angular momentum of the particles. In order to
tems are of considerable importance, since they provide us@rovide a better understanding of the importance of various
ful insight into more complicated systems arising in indus-particle and substrate properties that define the sygtegn,
trial applications, and also because of many fascinatingolling friction, sliding, and the inertial properties of the par-
effects that occur in simple experimental settings and thecticles), we concentrate part of the discussion on monodis-
retical models. Theoretical and computational efforts haveperse, hardstee), perfectly spherical solid particles, moving
led to results including density fluctuations, clustering, andon a hard(aluminum, coppersubstratg21-23. However,
inelastic collaps¢12—14,16—20 Further, a system of hard through most of the presentation, the discussion is kept as
particles energized by either an oscillating side wall or by argeneral as possible, and could be applied to many other
oscillating surface itself has been explored recentlyphysical systems. Specifically, the extension of the model to
[14,16,2Q. This system, due to its similarity to one- or two- more complicated systems and geometries is of importance,
dimensional gas, appears to be a good candidate for modadince most of the granular experiments involve some kind of
ing using a continuous hydrodynamic approath,16,20Q. interaction of the particles witfstatic or dynamigwalls. In
It is of great interest to connect theoretical and computaparticular, the discussion presented here is relevant to wall
tional results with experimental ones. Very recently, it hasshearing experiments, where particle-wall interactions are of
been observed experimentally that many complex phenommajor importance in determining the properties of the system
ena occur in the seemingly simple system of hard particlegsee[26] and the references thergin
rolling and/or sliding on a substrate. In particular, clustering In Sec. Il we explore all of the forces that act on the
[21,22 and friction-based segregatid@2] have been ob- particle ensemble on a moving, inclined substrate. First we
served. While some of the experimental resudtg., cluster-  explore particle-particle interactions and formulate a model
ing) could be related to the theoretical resu2], there are incorporating the fact that the particles roll on a surface and
still considerable discrepancies. Theoretically, it has beemave their rotational degrees of freedom considerably modi-
found that the coefficient of restitution, measuring the elasfied compared to “free” particles. Further, we include the
ticity of particle-particle collisions, is the important param- interaction of the particles with the substrate, paying atten-
eter of the problem, governing the dynamical properties otion to the problem of rolling friction and sliding. The analy-
the system. While the coefficient of restitution is definitely sis is extended to the situation where the substrate itself is
an important quantity, a realistic description of an experi-moving with the prescribed velocity and acceleration. Be-
mental system cannot be based just on this simple parameteause of the complexity of the interactions that the particles
As pointed out in21], the rotational motion of the particles experience, we first consider the problem of particles moving
without sliding, and include the sliding at the end of the
section. In Sec. lll, we give the equations of motion for a
*Electronic address: kondic@math.duke.edu particle that experiences collisions with other particles, as
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ag=—]gsin(0), 1)

where 6 is the inclination angle.

B. Collision forces

There are many approaches to modeling collision interac-
tions between particlegsee, e.g.[29,33 and references
therein. We note that rather complex models have been de-
veloped[34—47, but we choose to present a rather simple
one, which, while necessarily incomplete, still models real-

FIG. 1. Coordinate frame used in the paper. istically collisions between particles moving with velocities
considered in this papdtypically between 1 cm/s and 100
well as interaction with the substrate. In Sec. IV, we applycm/s; see Sec. IV and AppendixX.B
these equations of motion to the simple case of particles In the context of the particles moving on a substrate, it is
moving in one direction only. It is found that many interest- important to realize that, even though particles are confined
ing effects could be observed in this simple geometry. Irnto move on a two-dimensionéD) surface, the 3D nature of
particular, we explore the effect of sliding both during andthe particles is of importance. Even if one assumes that the
after the collisions, and give estimates for the experimentaparticles roll on a substrate without sliding, only two com-
conditions that lead to sliding. Finally, we give the results forponents x andy) of their angular velocity(, are deter-
the time the particles slide after a collision, as well as for themined by this constraint. The particles could still rotate with
sliding distance and for the loss of the translational kineticQ2?, which could be produced by collisiorisereafter we use
energy and linear momentum of the particles. Q to denote the components of angular velocity in the
—vy plane only. We will see that rotations of the particles
influence the nature of their interaction, as well as the inter-
Il. FORCES ON PARTICLES action with the substrate.
Normal force.Using a simple harmonic spring model

Particles moving on an inclined hard surface experience29,30,33, the normal force on particlie due to the collision
three kind of forces(i) Body forces(gravity); (ii) forces due  with particlej, is given by
to collisions with other particles and wallgii ) forces due to
interaction with the substrate. In what follows we analyze I(il:[k(d_ri,j)_')’Na(vi,j'ﬁ)]ﬁv 2)
each of these forces, with emphasis on understanding the
interac.tio_n between the substrate aljd the particles. V\/.hile.tr\ﬁhere k is a force constanty; j:|ri j|, f=ri—r;, n
analysis is kept as general as possible, some approximations = ‘ d ’ q ‘ e R
appropriate to the problem in question are utilized in orderto_ /i Vij=Vi—Vj, MIs n€ reguced mass, a !

keep the discussion tractable. In particular, the coefficient of Ri» whereR; andR; are the radii of the particlasand,

rolling friction is assumed much smaller théstatic and ki- rgspectwely. In this paper, we assume monod|s'perse' par-
nemati¢ coefficients of sliding friction. Further, in this sec- ticles, so thaR;=R;=d/2. The energy loss due to inelastic-
tion the particles are confined to move on the substrate with'1—t_y of the C.O||ISI.OI’1 is included by the dampmg constap,. .
out jumping; the experimental conditions under which this'he damping is assumed to be proportional to the relative
extra degree of freedom is introduced are discussed in Se¥elocity of the particles in the normal directiom, While we

IV. Throughout most of this section it is assumed that theuse this simple linear model, the parametierand yy are
particles are moving on the substrate without sliding; in Secconnected with material properties of the particles using a
Il C 3 we explain the conditions for sliding to occur. nonlinear mode(see Appendix B We note thatyy is con-

In order to formulate a model that can be used for effi-nected with the coefficient of restitutione,, by e,
cient molecular-dynamics simulations, we choose ratheF €Xp(—teo/2). Here,tey is the collision time and is ap-
simple models for the interactions between the particles angroximately given byt.,~7\m/(2k) (see Appendix A
between the particles and the substrate. In modeling colliMore realistic nonlinear models which lead to a coefficient
sions between particles, we neglect static friction, as is oftelf restitution that is velocity35,40—42 or masq43] depen-
done[27-32. On the other hand, the static friction betweendent are discussed in Appendix B.
the particles and the substrate is of major importance, since it Tangential force in the sy plane.The motion of the par-
leads to rolling particle motion; consequently, it is includedticles in the tangential directiofperpendicular to the normal
in the model. direction, in thex-y plane leads to a tangenti&gkheay force.

This force opposes the motion of the interacting particles in
the tangential direction, so that it acts in the direction that is
A. Body forces opposite to the relative tangential velocity, of the point

of contact of the particles. Both translational motion of the

Here we consider only the gravitational force that acts Ofhenter of mass and rotations of the particles with component
the center of mass of the particles. It is assumed that there

. . o . . . t
are no othere.g., electrostatidong-range forces. In the co- of angular velocity in thé direction contribute tw,, thus
ordinate frame that is used throughdsee Fig. 1, the ac- . . , ,
celeration of a particle due to gravity, is Urer= Vi j- ST R(Q{+Q5), 3
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z collision with the particlg acts in the direction opposite to
the k component of the relative velocity of the point of con-
tact. Similar to the “usual” shear force, we assume that the
magnitude of-; cannot be larger than the normal force times
the Coulomb coefficient; thus

k=S — v min(ysmlv], vl FRDK, ®)
and, for a general collisiom’,= R[ (€;+ ;) Xk]-n. In the

. case of a central collision as shown in Fig.v2,, simplifies
X to

FIG. 2. The collision between two particles, with the linear ve-

locities in thei direction only. The direction of, follows from the

assumption thafv;|>|v;|. The friction forcef is explained in the ) ) ) .

following section.(The particles and] are assumed to be in con- 1h€ torque acting on the particiedue to this force isT=x

tact; for clarity reasons we show them separated X Fg. This torque produces an angular accelerat@n
=T/1. Assuming that there is no sliding of the particles with

Wheregz(ﬁ.j,_ﬁ.i)_ We model this forcdon the particle  respect to the substrate, we obtain the following result for the

Vi = R(Q+ Q) ]. (7)

i) by [29,30 linear acceleration of the particle
C:S _ .t mn E t , FC é 4 . . RZ FC .
§=SgN —v ) Min(yg |Urel| Vs| N|) (4) a(F:z: ROX K= |I R| Sgr(—vfe|)n. )

Here the Coulomb proportionality between normal and shear

(tangential stresses requires that the shear fof€g,, is lim- A 2D example given in Fig. 2 shows thaf, of both par-
ited by the product of the coefficient of static friction be- .. . S o
ticles,i andj, is in the —i direction.

: C
tween the paf“_c'e% and the r_10rmal f_orce_LFN|. The Let us also note that the forde; modifies the normal
damping coefficient in the tangentia@heay direction, yg, is : : .
- o . force, Fy, with which the substrate acts on the particle.
usually chosen ags= y\/2, so that the coefficients of resti- o T
tution in the normal and shear directions are identjg@] ~ From the balance of forces in tiedirection, it follows that

(see[41] for more details An alternative method, where one the normal force is given by

models shear force by introducing a “spring” in the tangen- ~

tial direction and calculates the force as being proportional to Fn=mgk cod 6) —Fg. 9)

the extension of this spring, has been used as (se#, e.g.,

[33,34). We neglect static frictiotisee[27-32,41,44,4Bfor  The “jump” condition mgk cos@)=F% is discussed in more

the discussion of validity of this approximatipn detail in Sec. IV. Here we assume nonz&gp, and consider
The torque on the particliedue to the force§ is T;=x; only the motion in thex-y plane.

X F$, wherex; is the vector from the center of the partigle To summarize, the collision interactions of the particle
to the point of contact, s&=—Rn. This torque produces With the particlej lead to the following expression for the
the angular acceleration of the partiélén the k direction, total acceleration of particle(in the x-y plane:
Q*=T#I=—R/INXFS, wherel is the particles’ moment of aC=ad +ai+ad, (10)
inertia. Recalling thafFs is defined by Eq(4), one obtains

(we drop subscript hereatfter, if there is no possibility for \where
confusion

1 — ..
Qz:—?lFélsgrtvieO- ) an = LK(ZR=ri j) = ynm(vi;-n)]n,

By direct integration, this result yield@% With this, the e 1 ot c t 2

. . . =—min(ysm Vsl Frl)san(— S,
relative velocity,vy, [Eq. (3)], is given, and hence we can 8=y min(ysmfv el vs|FR1)S —vre)
calculate the tangentigsheay force, Fs.

Tangential force in thé direction Since the particles are S = min(yemlvZ |, vel FS[)sgr — v )h
rolling, there is an additional force due to the relative motion &R I YsMUrell, Vsl PN SN~ V) N-

of the particles at the point of contact in the perpendiciar,

direction. Figure 2 gives a simple example of the collision ofHereay is the acceleration due to the normal force given by
two particles with translational velocities in thedirection — EQ. (2), & is the tangential acceleration due to the shear
only. We model this forceFS,, which is due to rotations of force, given by Eq(4), andag is the rotational acceleration
the particles with angular velocit§), in the same manner as due to the tangential force in tHe direction, given by Eq.
the shear forcef-g. The force,Fg, on the particlé due toa  (6).

2
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z force, Fy. While we include the rolling friction in the dis-
cussion, we neglect the small modification of the normal
Q0 force due to the effect of rolling friction.

} 1. Rolling without sliding and without rolling friction

| In this work, we ignore the complex natufeee, e.g.,
v,a [1,2)) of the friction force, and assume that there is a single
contact point between a particle and the substrate, with the
friction force, f, acting on the particle in the plane of the
, substrate, in the direction given by Newton’s law. In order to
f < calculate the acceleration of the particle, we use the simple
method given irf10]. The approach is outlined here, since in
FIG. 3. The forces and torques resulting from particle-substratghe |later sections we will use the same idea in the more
interaction. The friction forcef, produces the torquel, in the complicated settings.

direction of the angular acceleration of the particle; the rolling fric-  |f the substrate itself is moving, the friction force
tion force,f, , produces the torqud,, , in the opposite direction, so

that it leads to the decrease of the particle’s angular velo€hy, f=ma (17
The deviation off, from thek direction has been greatly exagger- )
ated for the case of har@.g., metal spherical particles. is responsible for the momentum transfer from the substrate
to the particle, whera is the particle acceleration. This force
C. Interaction with the substrate produces a torquésee Fig. 3

The theory of rolling and sliding motion of a rigid body,
even on a simple horizontal 2D substrate, is complicated. For

example, even though the question of rolling friction was

addressed long ag@], more recent workf4—10] show that whereQ is the angular acceleration of the particle. Assum-
there are still many open questions about the origins of rolliNg that there is no sliding, the velocity of the contact point is

ing friction; a similar observation applies to sliding friction. equal to thE:‘ velocity of th'e substrats; (this constraint will

In order to avoid confusion, we use the term “friction” to P€ relaxed in Sec. Il C 3 in order to model the more general
refer to either static or kinematisliding) friction; rolling ~ ¢ase of rolling and/or sliding

friction is considered separately. In this paper, we consider
the motion on a macroscopically smooth surface—the mo-

Eff% of a single particle on a “bumpy” surface is analyzed in Multiplying Eq. (12) by KX and using Newton's law, we

We approach this problem in several steps. After the in-Obtaln
troduction of the problem, we first consider a particle rolling |
without sliding, with a vanishing coefficient of rolling fric- a= —kaﬂ. (14
tion, u, . Next we present the generalization that allows for m

nonzerop, , as well as for the possibility of sliding. The 1axing a time derivative of Eq13), and combining with Eq.

substrate is assumed to move with its own prescribed velogy 4 one obtains the following result for the acceleration of
ity, vs, and acceleratiorss, which could be time dependent. i,e center of the mass of the particle:

The generalization to space-dependenandag is straight-

T=—-Rkxf=1Q, (12

Vg=V+RkX Q. (13)

forward, but it is not introduced for simplicity. Similarly, we 1
assume that the substrate is horizontal; the generalization to a= Was. (15
an inclined substrate is obvious. 1+ —0

Figure 3 shows the direction of the forces acting on a '
rolling particle. The friction forcé that causes the particle to _. _ . . :
9P b Since for a solid spherical particle= 2/5mR?, we obtaina

roll acts in such a direction to produce the torquie,n the /72 So.th lerati f lid particl . ith
direction of the angular acceleration of the particle. Assum-_ as. S0, (N€ acceleration of a Solid particie moving with-

ing that this friction force is applied to the instantaneous®Ut rolling frictio_n, or sliding, on a horizontal surface, is 2/7
rotation axis, it does not lead to a loss of mechanical energy? the acceleration of the surfacas [10].

as pointed out in8]. If w, is zero, the particle will roll
forever on a horizontal surface.

On the other hand, the rolling friction forc§,, acts in The rolling friction leads to an additional force, respon-
such a way to oppose the rotations. Thus it produces aible for slowing down a particle on a surface. As already
torque, T, , in the direction opposite to the angular velocity pointed out, this force produces a torqdg,(see Fig. 3 in
of the particle. This torque could be understood if one asthe direction opposite to the angular velocity of the particle,
sumes a small deformation of the substrate and/or particl&?. The origins of this force are still being discussed. The
which modifies the direction of the rolling frictiofreaction effects such as surface defects, adhesion, electrostatic inter-
force, f, , applied to the particle at a point slightly in front of action, etc., that occur at the finite contact area between the
the normal to the surface from the particle’s cerfiee9].  particle and the substrafé], as well as viscous dissipation
We note that this reaction force is actually our usual normaln the bulk of material[4,5,7 have been shown to play a

2. Rolling without sliding with rolling friction
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role. Fortunately, for our purposes, we do not have to underto the product of the normal force and the coefficient of
stand the details of this force, except that it decreases thidnematic(sliding) friction,

relative velocityv=v— v of the particle with respect to the .

substrate. The acceleration of the particle due to this force, f=— u Fylu. (18)

ag, Is given by .
The typical ranges of values @f; and u, are 0.5-0.7 and

N 0.1-0.2, respectively. In the subsequent analysis we neglect
- v, (16 rolling friction, since the rolling friction coefficienty, , is
m two orders of magnitude smaller than bqth and .
- , . i i The condition for sliding if there are no collisionk this
where the coefficient of rolling frictiony,(|V]), is defined simple case, the friction force is given by Egé1) and(15).
by this equationy=V[v[, andFy is the normal force. Alter-  From the condition for sliding]f| = |fmad, Where [fraf is

natively, one could define 'Fhe coefficient of rol]ing friction as given by Eq.(17), we obtain that the sliding occurs if
the lever hand of the reaction foreshown in Fig. 38J; for

our purposes, the straightforward definition, HG46), is
more appropriate. For the case of steel spherical particles |ag|=
rolling on a copper substrate, the typical valuesupfare of

3 . B . .
the order of 10° [21,22. Realistic modeling of the experi- ag expected, if the substrate is accelerated with large accel-
ments where rolling friction properties are of major impor- gration, a particle slides. On a horizontal surface, the condi-
tance(such as a recent e>.<per|me[r22]l, WhICh. e_xplo.res & tion for sliding is |agd>|(ag)mn, Where |(ag)mnl=(1
system consisting of two kinds of particles, distinguished by+mR2/I),uSg. For a solid steel spherg,s~0.5, s0|(ag)mi
their rolling friction) requires accounting for the velocity de- 1 75 4 “We note that this result does not dependmgn the

pendence of, = u,([V)- o . _ . diameter of a particle.
We note that there is an additional “drilling” friction

force, which slows down the rotations of the particles around
their vertical axes. This friction arises from the finite contact
area between the particles and the surface. While this addi- The preceding section gives the results for the forces that
tional force is to be included in general, we choose to negledhe particles experience because of their collisions, as well as
it here, since for the experimental situation in which we arepecause of their interaction with the substrate. Now we con-
interested 21,22, the collisions between particles occur on asider the mutual interaction of these effects and give expres-
time scale that is much shorter than the time scale on whicBjons that govern the motion of the particles.

this rotational motion is considerably slowed down by the Similarly to before, we consider first the case where the
action of this frictional force(for other experimental sys- particles roll without sliding. Sliding is included in the sec-
tems, e.g., rubber spheres, this approximation would be ursnd part of the section.

realistig.

To summarize, a particle rolling without sliding on a hori-
zontal surface experiences two kind of forces. First, the sur-
face transfers momentum to the patrticle, “pulling” it in the In this section, we do not include rolling friction, since its
direction of its own motion and leading to the acceleration gffect is rather weak compared to the effects due to the col-
a, given by Eq.(15). Second, due to the rolling friction, the lisions and the substrate motion. It is important to note that
particle is being slowed down, i.e., it is being acceleratedhis approximation is valid only during the collisions; in be-
with the accelerationag, in the direction opposite to the tween the collisions, the rolling friction force has to be in-

m
1+ —

Ms
= 221Fyl. 19

IIl. MOTION OF THE PARTICLES

A. Motion without sliding

re|ative Ve|ocity Of the partic|e and the Substrate_ Cluded, Since |t iS the Only actiVe fOI’CG Other than graVity.
The linear acceleration of a partic{en the x-y plane is
3. Rolling with sliding given by
Finally we are ready to address the problem of sliding. ma= F$+ FS+f+mag, (20)

Sliding of a particle that is rolling on a substrate occurs when
the magnitude of the friction force, resulting from Ea1),  where FS, and F§ are the forces on a particle due to the

reaches its maximum allowed valifg,.,, where collision, in the normal and tangential directions, respec-
tively; f is the friction force andy is the acceleration due to
|fmad = sl Fnl (170 gravity. Figure 2 shows a simple 2D example, where, for

clarity, Fg, the rolling friction force, and the rotations, char-
HereFy is the normal force with which the substrate acts onacterized by()?, are not shown. The torque balar{ggner-
a particle in the perpendiculak, direction, andu, is the  alization of Eq.(12)] implies that the angular acceleration of
coefficient of static friction between a particle and the sub-a particle is given by
strate. Once the conditiofl7) is satisfied, the friction force
has to be modified, since now this force arises not from the
static friction, but from the kinematic one. The directionf of
is opposite to the relativéslip) velocity of the contact point
of a particle and the substraie,Hereu=u—vg, whereuis  where we concentrate only on the rotations in xag plane
the velocity of the contact point. The magnitudef a equal  (the rotations characterized ) enter into the definition of

) R . A
Q:—I—(kxf+n><F;), (21
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F% only). Following the same approach that led to ELp), If the sliding condition, Eq(25), is satisfied, one has to
one obtains the result for the linear acceleration, relax the no-slip condition, E¢(13). Instead of the no-slip
condition, we have
m . R
l—[F,f,+F§+(k~Fﬁz)neraG]eraS u=v+RkX Q. (26)
ma= o= . (22 o
1+ —— If u=vg, the sliding velocity,u=u—vg, vanishes. The

| equation for the “sliding acceleration,t (relative to the

. - acceleration of the substratag), follows similarly to Eq.
Similarly, one can solve for the friction forcd, that the (22) s) y q

substrate exerts on a particle

mR2 li= 1+mRz f+FR+ Fg i k-FRn+
FR+F&+ m(ag —ag) ——— (K- FR)n mu= | nFFsm 7 (k-FRintm(ae a(s;)
f=— = . (23 . | | | -
1+|— To summarize, the linear acceleration of a particle is
given by Eq.(20), where the normal forcefy, is given by
For a solid particle, one obtains Eg. (2) and the tangential forc&g, by Eq.(4). If there is no

sliding, then the friction force, is given by Eq(23); on the
other hand, if the sliding condition, ERY), is satisfiedf is
given by Eq.(18). Further,ag is the acceleration of the sub-
strate, andag, the acceleration due to gravity, is given by
Equations(22) and(24) effectively combine the accelera- g (1). The angular acceleration of a particf®, is given by
tion due to the substrate motion, E@5), and the accelera- gq (21), where the rotational force due to the collisid¥,
tion due to the collisions, Ec{lO)_. We note that, due to t_he is given by Eq.(6). Finally, the sliding accelerationy, fol-
interplay between angular and linear motion of the partlcles,ows from Eq.(27). As mentioned earlier, the acceleration
the total accelerationgiven by Eq.(22), is not simply the ue to rolling friction,ag, is not important,as long as much

f‘#mf c.)ft.the 'l';u.:cteleratt]ons qt?]etrtlo thebc?ll|f(§|_ohns, gra;nty, aNGtronger collision or friction forces are present; it has to be
€ Irictional Interaction wi € substratd.nese INterac- - 54qeq to the linear acceleratiom, for realistic modeling of

tions are effectively coupled, and one should not Cor‘S'de{he motion of the particles between the collisions. The rota-

them separately. tional motion of the particles, characterized B, enters
] o into the model only by modifying the collision force between
B. Motion with sliding the particles in the tangential directiofs.

The condition for sliding follows immediately from Eq. The general expressions given in this section are used in
(23), and from the sliding condition|f|=|f,.| [see Eq. MD-type simulationg24] in order to simulate the motion of
(17)], yielding a set of particles on an inclined plane. In this paper, we apply
the results to a simple setting and obtain the analytic results
which provide better insight into the relative importance of
various interactions. This is the subject of the next section.

5 2
ma=7[F§+Fg+(k-FCR)n]+7m(as+aG)- (24

F°+F°—ﬁ(R-F°)ﬁ+m( —ag)
NTFs | R 3z~ as
M2 = ug|Fn|. (25

1+ T IV. DISCUSSION

) o o o The analysis of the preceding section gives rather general
If this condition is satisfied, thehis given by Eq.(18). results that provide all the information needed for modeling
~ Letus concentrate for a moment on the condition for slid-of the particles’ motion. On the other hand, the complexity
ing of a solid particle on a horizontal static substrate, ancyf the final results obscures simple physical understanding.
neglectFy and Fg. The sliding condition is now given by |n this section, we concentrate on the particular case ex-
|FRl=(1+mRe/1) ug Fy|. As one would expect, this result plored in recent experimenf®1,22), performed with steel
resembles the condition for sliding due to the motion of theparticles on a metal substrate, and choose parameters appro-
substrate, Eq(19), since the two considered situations arepriate to this situation. This system allows for significant
analogous(the acceleration of the surfaceg, plays the simplifications, so that we are able to obtain rather simple
same role as the collision forcEy,, scaled with the mass of analytic results. The assumptions which we use in what fol-
a particlg. Consequently, if the substrate is being acceleratetbws are summarized here for clarity.
in the direction ofFy, a largerFy, is required to produce (i) Particles move just in one,direction.
sliding. So, it is actually the relative acceleration of a par-  (ii) Particles are rolling without sliding prior to a colli-
ticle with respect to the substrate motion, which is relevantsion.

in determining the condition for sliding (iii) The relative velocity of the particle prior to a colli-
The effect of Fg on the sliding condition is more in- sion, vy=|v/— V), is taken to be in the range 100 cm/s
volved. SinceFy is connected withFg via Eq.(9), Fg modi-  >3%>1 cm/s. Itis assumed that the linear force model, Eq.

fies both sides of Eq25). The net effect of is discussed (2), is appropriate for these velocities, but a nonlinear model
in some detail in Sec. IV. is used to determine the approximate expressions for the
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z i i o - i i b) zontal, and the rolling friction can be neglected. In this case,
e Q e e Egs.(20),(21) and(27) simplify to
....... : .
K v S . ma=Fy+f, (28
. R.
f u — f u X Q=——kX f, (29)

FIG. 4. The forces considered in this sectionz plang. (a)
shows the first part of the collision, when the particles are still .
moving towards each other, arid) shows the second part of the mu=
collision. For clarity, only forces on the particleare shown. The
rotational motion is discussed in the text.

mR2
1+|—

f+F,. (30)

Further, the friction force is given by
force constantk, and the damping parametey, (Appen-

dixes A and B. For smaller relative velocities, we will see Fy

that the interaction with the substrate substantially compli- [ mR)if [f|<udFyl

cates the analysis. Further, for very small impact velocities, f= ( —) (3D
the coefficient of restitutiorgboth in the normal and tangen- '

tial directions shows a complicated dependence on the im- _/-Lk|FN|C| otherwise.

pact velocity of the particlep40], which we do not include
in our discussion(see Appendix B Still, the considered

range of velocities is the most common one in the experif. d BV ing EQ(30 b hat the fi
ments[21,22, so we do not consider that this is a serious 1ed. By '”Spec“r_‘g _q( ), we observe that the first te.”'? on
the right-hand side is the one that decreases the sliding ac-

limitation (Ref.[40], as well as our preliminary experiments . ; ; : i
are consistent with the assumption that the coefficient of resS€leration continuously, and possibly brings the particle back

titution is constant in the considered velocity rarjg8j). to pure FO_'””Q' sinqe it acts always in the direption opposjte

(iv) The particles are assumed to be moving on a horizont© the slldlng velocity. Because of the constraint on the fric-
tal, static substrate; the analysis could be easily extended 90 force given by Eq(31), and u<us, the right-hand
other situations. side of Eq.(30) gives a net contribution in the i direction.

(v) We neglect rolling friction, since its effect is negli- S0, when sliding begins, the particleexperiences sliding
gible during a collision, or as long as the particles slide.  acceleration in the direction, leading to the sliding velocity,

(vi) For simplicity of the presentation, we assume that theu, in the same direction, as shown in Figa# In other
particles initially move with velocities in opposite directions; words, for this situation, the particleis still moving to the
the final results are independent of this assumption. To avoigkft, with angular velocity in the-] direction, but it is sliding
confusion, the particle is always assumed to be initially 5 the right, with sliding velocityu. Let us also note tha

Let us assume that the sliding conditidr; u¢ Fy/, is satis-

either static or moving in the-i direction. slows down the angular motion of the particle, as can be seen
We are particularly interested in answering the following by inspection of Eq(29). Next, we consider the typical situ-

guestions: ation during the second part of the collision, when the par-
(i) What is the condition for sliding to occur? ticles are moving away from each otH&tig. 4(b)]. Analysis

(i) How long does a particle slide after a collision, and shows that almost all of the conclusions about the situation
what is the distance traveled by a particle during this time?depicted in Fig. 4) extend to this situation; in particular, the

(i) How much of the translational energy and linear mo-directions of the sliding velocityy, and the friction forcef,
mentum of a particle are lost due to sliding? are the same.

In order to fully understand the problem, we start with the  After understanding this basic situation, it is easier to un-
simplest possible situation, and that is a symmetric collisiorderstand the role of the remaining terms, given in Sec. Il B
of two particles moving with same speeds but opposite vebut ignored in Eqs(28)—(31). The contributions from grav-
locities. Further, we assume the collision to be totally elasticity and the motion of the substrate are obvious. The analysis
From this simple example, we conclude that the particleof the collision force in the tangential directioRg, is simi-
substrate interaction is not importadtiring a collision, at  |ar to the one abouES,, since the forces in the normal and
least not for the before-mentioned range of particle veloCitangential directions could be considered independently. The
ties. Next we look into the case of a more realistic, inelastic;onripytion coming fromFS, is discussed in the following
collision. Finally, we consider a general inelastic, asymmetyqtions. We note that in the case shown in Figthé par-
ric collision of two particles. ticles are initially moving with exactly opposite velocities

the contribution fromFg vanishes, since it is proportional to

A. Symmetric collisions the relative velocity of the point of contact in thedirection.

Let us concentrate on the first part of a symmetric central
collision of two particles, and analyze the forces acting on
the particlei, as shown in Fig. @&). The only collision force Let us define the compression ky: (R—r; ;/2)/R, where

acting on the particle i&;, the substrate is static and hori- ri,; is the distance between the centers of colliding particles

1. Symmetric elastic collision
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FIG. 5. (8) The maximum compressioRy,,y; (b) the minimum compressiom%in, required to produce sliding. Both quantities are scaled
with a particle diameter. For inelastic collisions,;,=0 (see texk

andR is the particle radiusx>0 is required if a collision are shown in Fig. &). The dependence ab, on v° (see
occurg. The maximum compression is given b&ppendix  Appendix B, leads to the increased values xﬁ,m as v’

A) —0.
The compressiorsS,;,, is reached at time,;,, measured
o _ U?e| 37 from the beginning of the collisiofsee Appendix €
Xmax— 2Rwo g ( )
0 mR #s9
. . . . 0 =1+— . (34)
where, for a symmetric collision, the relative velocity, Lol wd

=209, andv? is the initial speed of the particles. For sim-
plicity, we use scalar notation and the sign convention thafFor the choice of parameters as given in Appendix B, we

the + sign of the translational velocities refers to the motionobtaint®, ~10~8 sec, and?, /t.,~5X 10~4, confirming our

in the +1 direction, and ther sign of the angular velocities/ conclusion that sliding with respect to the substrate is the
accelerations to the rotations ] direction. In obtaining dominant motion of the particles during a symmetric, elastic
Eq. (32), it was assumed that only the collision forces arecollision. -
important in determining®,,. More careful analysis given ~_ From Eq.(33) we can also deduce under wgat conditions
in Appendix D provides justification for this assumption. The Sliding occurs. Obviously, we require t!""ﬂghin<xma.x; Using
natural frequencye,, associated with the linear force model Eds-(32) and(33), we obtain t?at the initial velocities of the
specified by Eq(2) is given byw?=2k/m. It is related to the ~ Particles have to satisfy,>v", where(see Appendix €
duration of the collision vid.,= 7/ wq. The nonlinear force

model (see Appendix B predicts thatw, very weakly de- Ub:(1+ ﬁ) #s9 (35
pends orv’,; we observe that typically,~10"° s, so that I ] wo

for v2,~10 cm/s,x%~2x10 *. Figure %a) shows the de-
pendence ok’,., on the relative initial velocity of the par-
ticles.

It is of interest to estimate the range of the compressio
depths for which the sliding conditioff| = u¢|Fy|, is satis-
fied, leading to sliding of the particles with respect to the
substrate. Sliding occurs whéRy|=(1+mR2/1) ugmg [see
Eq. (31)]. Using the expression for the normal force, E2),
we obtain that this condition is satisfied fo«f@nagxs,ip

BX%m, where(see Appendix €

For the set of parameters given in Appendix B, this expres-
sion yields a very small value,’~10"2? cm/s. So, sliding
peeurs during almost all collisions occurring in typical ex-
perimentg21,22,.

Let us now look into the rotational motion of the particles
during a collision. The friction force is the only one which
produces angular acceleration. Without loss of generality, we
consider the particle which is assumed to move initially in
the —i direction, with angular velocity2?=—v%R. Inte-
grating over the duration of the collision gives the result for
MR\ ug the angular velocity of t_he particle at the end of the collision
x%inz( |_) Ral’ (33 (att=ty,) (see Appendix E

fO_QO+ mR g
Using the values of the parameters as specified in AppenQi T o

| w
dixes B and C, we note that farl~10 cm/s, x2;,~3 °
x10"7. ForR=2 mm,x%, . is on an atomic length scale, so MR\ g (1
we conclude that a particle slides during almost all of the X| wu+| 1+ —)O—S(—,LLS—,LLk) . (36)
course of a symmetric, elastic collision. The resultsxfy, I Jofwo | 2
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The sliding velocity of the particld at t=tg,, u/’=0° _ The maximum compression is now given (ee Appen-
— RO [see Eq/(26)], now follows, dix A)
“ifo:”?el‘nn_RZE X _ Ve 1- et 0(e) (39
g max 2Rwo 2 ’
mR? msg (1 .
X| mu+| 1+ 50 |k |- (37 Figure 5a) shows the result fox,,, for a few values o€, ,
20 e1@o using the parameters given in Appendix B. In Appendix B it

This is an important result, since the sliding velocity of a!s.shown that thaw, andtey are weakly dependent on the

; ; _(,,0\—1/5
particle at the end of a collision determines the energy an& Iatlzlrn\ijerLOC(I:%/nEtigss(ign) sc;I’eS\c/)vittrr:a;[htehein;[?;uI\t/sézlgczzrittheas
momentum loss due to the sliding after the collision. Using """ "o\ 45 P lting in the sliaht t f y
the parameters as in Appendix B, we note that the contribu¥max (UFE') - resuiting In the shight curvaturé o m“a.x
tion of the second term in Eq(37) is approximately curves in Fig. £9). In Appendix C it is shown that for in-

0.01 cm/s. So, we conclude that the frictional interaction 01?|aSIIC COI.I'S'OntSH the t'mef.’mi”’ a(}whtlchdslldmg startstgo'es”
a particle with the substratduring a collision only very 0 z€ro, since the corrections dué o damping are typically

weakly influences the sliding velocity of a particle at the engStronger than corrections due to the particle-substrate inter-
of the collision. Similarly, the angular velocity is only action. Consequentl_y, the angular acceleration, given by Eq.
slightly modified, as shown in Fig. 4A particle exits an (29), is constant during the whole course of the collision. For

elastic, symmetric collision with an angular velocity which is the particlei, Q;=,gmR/, so that at the end of the colli-
almost equal to its initial angular velocity, resulting in a Sion (=tco)

sliding velocity equal to twice its initial translational veloc-

ity. mR T
The fact that the particle-substrate interaction is negligible =0+ T MZ)g ~07, (40)
during a collision follows also from a simple energy argu- 0

ment. Figure 5 shows that the maximum compression depth 0 0 o _ o

is of the order of 10%, in units of the particle diameter. So, Where{};=—v"/R. The sliding velocity of the particle at
the order of magnitude of the ratio of the energies involved = tco iS given by[see Eq(26)]

in the particle-substrate interactidB, ¢~ 2 usMgRXyax, and

of the energy involved in the collision itselfE.y, (1 0 mR2 w9 0
~ 2k(RXna? IS given by Ui =5 (1+en)vre——— Twg ~5(1+enve. (4D
Eps MsMUpsteo Gleo
E_ps% s Orezco ~=—=, (38)  Similar to the discussion following E¢37), we observe that
col M(V re)) Urel the friction during a collision leads to negligible corrections.

In what follows, we ignore these corrections, and assume

where Eq.(32) has been used. Fof,=10 cm/s, we obtain Q=00 andu’=(1+e,)v/2.

Eps/Eco=2X 103, Clearly, for all collisions characterized
by very short collision timesgequivalently, small maximum
compression depthsthis ratio is a very small number, as-
suming common particle velocities. Correspondingly, the The particlei exits a symmetric collision with transla-
particle-substrate interactiaturing a collision influences the - tional velocityv!=e,w%=¢,v%/2 (in the +1i direction and
dynamics very weakly. Considerable modification of this es+it, sliding velocityuif, given by Eq.(41). After the colli-

timate could be expected in the case of “softer” collisions, gjon, it experiences a friction force, resulting in the sliding
where both the duration of a collision and maximum com- N
accelerationu;= — (1+mR/1)u,g, as follows from Eq.

pression depth are much larger. (30), whereFy, is now absent. This friction force is present as
2. Symmetric inelastic collision long as the sliding velocity is nonzero. It slows down the
- L ) particle and leads to the corresponding loss of the transla-
Inelasticity of a collision introduces a damping parametertiona| kinetic energy and linear momentum. Neglecting roll-
vn, Which is related to the material constants in Appendixes?,ng friction, we obtain the result for the timeS, measured
A and B. The damping is directly connected with the coef-from the end of the collision, when sliding stofttue to the

ficient of restitutione,, by yn=—2/tcyIn(e;) (Appendix(B).  symmetry, this result is the same for both colliding partigles
The collisions of steel spheres are rather ela&gpically

e,~0.9), so we are able to introduce a small parameter, . ) o

=yn/wo~—2/m(1—e,)<1. In what follows, we perform o U z(ltenug

consistent perturbation expansions of the equations of mo- t _ﬁ_ mRZ) : (42)
|

3. Sliding after a symmetric collision

tion, and include only the corrections of the ordfe). For ! Mgl 1+ T

completeness, we also include the terms due to the interac-

tion with the substrate, even though we have already shown

that this interaction is not of importance for the physical The translational velocity of the particleat the timet®, v}
situation in which we are interested. =p;(t=t%), is given by
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________ ’ ] FIG. 7. (a) The loss of the energy and momentum due to sliding.
__________ ] (b) The ratio of the loss of the mechanical energy and linear mo-
05 "1'(') 2'0 '0' — '4'0' 2 mentum due to inelasticity of a collisioME ., ,ApPco), and due to
v (cmis) Sliding (AEip,APay)-
FIG. 6. The timet®, until which a particle slides after the col- - .t @2
lision, and the distance, traveled during this time. Here=ov ' is AEgjp= ()= ()" (45)
the initial relative velocity of the particles. The parameters are as . . . —
The relative loss of energy is defined A&i,= AEg,/Eo,

specified in the text. : _
whereEy=(v°%)2. We note that very little energy is lost due

mE2 to sliding while the collision is taking place. The sliding loss
of energy occurs after the collision, and it is equal to the

e,——1
s_ f s_. 1o " work done by the friction force. Using E@43), we obtain
OI=Ui T Q=S e mR 43 the result forythe relative energy Iossgduﬁo)sliding,
1+ - -
e,—1+2e,——
The angular velocity of the particle at this time isQ} AEg.=(1l+e,) ' _ (46)
=0;(t=t%=v¥R, since the particle does not slide any P " 1+ﬁ 2
more. We observe that the translational motion of the par- [

ticles is considerably slowed down due to the friction force;
for solid spheres ane,=0.9, [v§|~0.36 v° (k=i,j). Equa-  Figure 7a) showsAEg, for a range of values o, (assum-

tion (43) gives that forl/mR2>eg,,, v} is negative, meaning ing solid sphergs In the limit of an elastic collisiong,

that the particle is movingackwardsat the time when slid- —1, and we obtaimAEg;;~0.8. So, a solid particle loses
ing ceases. For almost elastic collisions of solid particles@PProximately 80% of its initial translational kinetic energy

this condition is not satisfied, so the particles are still movingdU€ to sliding in a completely elastic symmetric collision.
away from the collision point at time. It is also of interest to compare the relative energy loss

Until the timet®, each of the particles travels the distancedue 0 sliding AEg;,, with the energy loss due to inelasticity

s away from the point where the collision has taken place®f 2 co!ision, AEco . The latter is simply given bAE,
=(1-¢€}) (we neglect the small loss of energy due to inter-

given by ) ’ . Iy
action with substrateéluring a collision, thus
(vie)? m
S= rel R2 2(1+en) en_1+2|_en . AEco|: mR2 2 l_en (47)
8 1+ — AEg; I
ng( | slip e — 1+ Zenl_

(44)
. The result forAE.,/AEg, is shown in Fig. ). We ob-
0 _ col slip
Flgdure_ﬁiosgoms thetrelsultsl_f(;b? Zmd_ S thr Utr'ﬂ'(éi% (c):;n/s serve thain the limit of low damping, the sliding is the main
and elel' ' eTEar Icles s|| € during e” " h .I' S source of energy los3his conclusion is independent of the
ands~*o. le\'/l ese resu ts c?mparec\j/veh with pre !m'narY'WitiaI particle velocity or the particle diameter.
experiments. More precise analysis and the comparison wit Similarly, the linear momentum lost due to sliding in a

experimental results will be given elsewhg@s]. symmetric collision(relative to the initial momentumis
) given by
4. The loss of the translational energy and momentum
due to sliding in a symmetric collision of—ps 14+e
_ R AD. = = n 48
Let us define the energy loss due to slididd:;,, as the Psip Vo 14 mR “8)

difference between the translational kinetic energy of a par- [
ticle just after it has undergone a collision and its transla-

tional kinetic energy at time after the collisionscaled with  so (in an elastic symmetric collisigna solid particle loses
the reduced magsTherefore, approximately 60% of its linear momentum because of slid-
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ing [Fig. 7(@]. The ratio of the loss of the linear momentum
due to inelasticity of the collision, defined h¥p.,=(1
—€,), andApg;,, is given by

ApcoI:

1
Apslip

|
(We note thatApg,, is the loss of linear momentum of one
particle in the lab frame; inelasticity of the collisions con-

1l-e,
l+e,’

(49

serves the linear momentum of a pair of colliding particles in

the center-of-mass frameThis result is shown in Fig. (D).
Similar to the energy considerations, we observe that fo
small dampingsliding is the main source of momentum loss

B. Asymmetric collisions
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is given a valueys= y\/2 [30]). The only constraint opg is
that ys/wp<<1, so that the coefficient of restitution in the
tangential direction is close to 1.

The forceFg; modifies the rotational motion of the par-
ticle i. In Appendix E it is shown that the angular velocity of
the particle at the end of a collision=t.,= 7/ wy) is given
by

Q/=07-Cc(Q)+Q?), (56)
where C=mmR;ys/(2l wg) =0(€)<1. Equation (56) is
correct to first order ire. Using this result, and the transla-
tional velocity of the particle att=t.y [Eq. (A7)], we ob-
tain the sliding velocity of the particleé at the end of the
collision,

Next we consider a central collision between particles

moving with different speeds, such as the one shown in Fig.

2. On a horizontal static substrate, E¢&1), (22), and(27)
now simplify to (index i emphasizes that the particleis
being considered

ma;=Fy ; +f, (50)

Q= (51)

R . ~ c
- l—(k><fi+n>< FR,i)v

mR2 . mR2 . o
1+|—)fi+FN’i—|—(k~FR’i)n. (52

mUi =

Further, the friction force is given Hdpee Eqs(18) and(23)]

mR2 . -
N~ |_(k'F§<,i)”
‘- - mR2 if |fi|<MS|FN,i|
i 1+ ——
— wd Pl otherwise.

The analysis of a symmetric collision, given in Sec. IV A,
shows that the frictional interaction of the particles with the

substrate during a collision can be neglected. We use thi

result in the following discussion and neglécin the analy-
sis of the collision dynamics of an asymmetric collision. This
frictional interaction is, of course, included in the analysis of
the particles’ motion after a collision, since it is the only
force acting on a particle on a static, horizontal substrate.
Normal force is being modified due &, so that
Fni=(mg—k-Fg k. (54
In Appendix E it is shown that, for typical experimental ve-
locities, the corrections ofg; due to its cutoff valugsee
Eq. (6)], can be ignored, since the cutoff leads @ge?)
corrections of the final angular velocity of the particle. So,
we takeF‘F’{‘i to be given by{see Eqgs(6) and(7)]

C

6=~ S mAL(Q+ )Tk (55)

1
uf=— E(1+en)(vi°—v?)+C(vi°+v?).

(57)

This result generalizes E¢41), which gives the sliding ve-
locity of the particles undergoing a symmetric collisi@he
particle-substrate interaction during the collision has been
neglected The tangential forcerg, leads to the last term in
Eqg. (57), modifying the sliding velocity in an asymmetric
collision. This modification depends owf +v}|, which mea-
sures the degree of asymmetry in a collision.

In order to exemplify the physical meaning of these re-
sults, let us consider for a moment a completely asymmetric
case: a particle moving with initial velocit\ij’ and undergo-
ing elastic collision = ys=0) with a stationary particle
In this case, we obtaia/=0, uj=—V’. So, the particlg is
stationary immediately after the collision, but its rotation rate
is unchangedsince in the limitys=0, Fg vanishes, and the
interaction with the substrate has been neglectsal that it
has a sliding velocity equal to the negative of its initial ve-
locity. Let us now consider the particle Its translational
velocity and sliding velocities are the samé=ul=Vv/,
since immediately after the collision this particle has the
ganslational velocity equal to the initial velocity of the par-
ticle j, but zero rotation rate.

“Jumping” of the colliding particles Let us finally ad-
dress the assumption that the particles are bound to move on
the substrate. From E¢54) we observe that, for large posi-

tive k- FS,, this assumption could be violated. The estimate is
given in Appendix F, where it is indeed shown that a particle
colliding with a slower particle typically detaches from the

substrate. Fortunately, the motion of a detached particle in

thek direction is limited by very small jump heights, so that
the modifications of the results for the dynamics of the par-
ticles in thex-y plane are negligible. On the other hand, the
fact that a particle is not in physical contact with the sub-
strate during a collision simplifies the analysis of the colli-
sion dynamics, since particle-substrate interaction is not
present. We note that we are not aware that detachment has
been observed in the experiments performed with steel
spheres moving with moderate spe¢2$,22. Since this ef-
fect provides direct insight into a collision model, it would

during the whole course of a collision. The damping param-be of considerable interest to explore these predictions ex-

eter, ys, is kept as a free parameter for generafitgually it

perimentally.
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FIG. 8. The sliding time?® of the particlei. The solid line shows FIG. 9. The sliding distancs of the particlei (|s]| in the texj.
the result for a symmetric collision. Hegg=0.9 andC=0.13. The solid line shows the result for a symmetric collisian€0.9

andC=0.13).
1. Sliding after an asymmetric collision

After a collision, the pe_lrticles experi_ence a friction_force, vS= 1 (VOO 1+ ﬁ —ZC) — (V=)
which produces the sliding acceleration and modifies the mRe) M | b
translational velocity. Figures 8—11 show the results for the 2{ 1+ T
time that the particles spend sliding, for the sliding distance,
and for the changes in their translational kinetic energy and «| e ﬁ_ 1) (60)
linear momentum. All of these results depend only on the "o '
sum and difference of the initial velocities of the particles.

We define During the timet?, the particlei translates for the distance
|s| from the collision point, wherg = (v +Vv)t$/2. Figure 9
vm=(v?—v?)-f, vpz(v?+v}))~f, (58)  shows|s|; contrary to the sliding time}, the sliding dis-

tance does depend strongly on the asymmetry of a collision.

and show the dependence of our results on these two quahhis dependence is present sirjeg is a function of both
tities. Since some of the approximations involving the rota-translational and sliding velocities of the parti¢leOn the
tional motion of the particles during collisiottsee Appendix ~ other handf? depends strongly only on the sliding velocity
E) are not valid in the limifv | <|v,|, we do not consider of the particle.

the casdv ,|~0 (which occurs when the initial velocities of ~ An interesting effect can be observed in Fig. 9: there is a
the particles are almost the samehis is the only imposed Pparticular combination of the initial particle velocities that

restriction. gives vanishing sliding distance. The meaning of this result
Using the result for the sliding velocity of the partidle IS that the particle returns to its initial position exactly at the
Eq. (57), and Eq.(52) for the sliding acceleratiofthe colli-  timet? after the collision; this occurs wherj= —v. Using

sion forces are now abs@ntve obtain the time when the Egs.(60) and(A7), we obtain the condition for zero sliding
sliding of the particlei stops(measured from the end of a distance in terms of the initial velocities of the particles,
collision),
m
+ enl— —-2C
= V). (6D

+en|—+2C

(ent+2)

mR2
1+ ——

; (1+e, io_ N_c i0+ 0 B
t?:%J = mvéz) RAL R V=
I (1+|_),U~kg

(en—2)

mR2
1+ ——

) o _ For a completely elastic collision of solid particles, we ob-
Figure 8 shows the result for the sliding time for fixgdand  5i v?=—6v?. Equation (61) gives a clear experimental

C, as a function ob, andv,,. Forv,=0, we retrieve the  pregiction which can be used to explore how realistic the
results for the symmetric collision, shown in Fig. 6. We 0b- .q)lision model is.

serve thatt® just very weakly depends on, ; this depen-

dence disappears in the limit of zero tangential dampig ( 2. The change of the translational kinetic energy
=0), as can be seen directly from E§9). and momentum due to sliding
. i . s s
The translational particle velocity at=t;" is vi=v;(t In this section we give the final results for the change of

=t))=v{+at’, wherea=— w,gu . Using Egs.(52), (57)  the translational energy and the linear momentum of the par-
and (A7), we obtain ticles due to sliding after a collision. These results assume
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for the symmetric case,,= 0. From Fig. 10 we observe that
the loss of energy of the particle strongly dependsvgn
i.e., on the degree of the > asymmetry of the collision. In par-

ticular, we observe thahk EsIIp could attainnegativevalues,
meaning that the particlsncreases its translational kinetic
energy due to slidingln order to illustrate this rather coun-
terintuitive point, let us consider for a moment a completely
asymmetric collision, characterized bj=v°, v/=0. Us-
ing Egs. (60) and (A7), the change of the energy of the
particle i (the initially stationary particle due to sliding,
easily follows,

mR2

)<

SinceC=0(¢)<1, AE'SIip is positive, meaning that the par-
ticle i loses its translational energy due to sliding after the
collision. On the other hand, the change of the energy of the
particlej (the impact particlg due to sliding, is given by

— %(1+en)_c
AEinp:T)Z

(1+e,) >+ (v9)2.

1+ ——

(62

FIG. 10. The change of the translational energy of the patriicle

due to sliding (&Eshp in the tex}. The solid line shows the result
applicable to symmetric collisiong{=0.9 andC=0.13).

that the particles slide the whole distargeso that there are — 1(1+e,)-C mR?\ 1+e,

no other collisions taking place while the particles travel this & Etip= TRz (e 1 |—) — }
distance. Consequently, for a system consisting of many par- ( 1+ I—)

ticles (as in[21,22), the change of the translational energy

due to sliding depends on the distance traveled by the par- X(v9)2, (63)

ticles in between of the collision$, Whenl is on average

much larger than the sliding distancg,one could consider
modeling the effect of sliding using an “effective” coeffi-
cient of restitutior{21], which we derive below. In this case,
we find that this “effective” coefficient of restitutiong?™,
depends only on the usual restitution coefficient, and on

The negative sign implies that the partiglgains transla-
tional energy by sliding. The interpretation of this result is
simple, in particular in the completely elastic limé,— 1
(alsoC—0). Since the collision is elastic, the translational
velocity of the impact particl¢ vanishes immediately after

the geometric properties of the particles. On the other handhe collision with the stationary particie But, the particlg

if 1=s, this “effective” coefficient of restitution will depend

still has the angular velocityﬂjf, which is (in the elastic

also on the local density and velocity of the particles. Thislimit) equal to its initial angular velocity. Consequently, the

effect is explored in more detail ir24].

We note that in our analysis we assume thaitself is a
constant; possible velocity or mass dependence epf
[35,40—43 would lead to an additional velocitfor mas$
dependence o0&®™. However, the formulation o&c" does
not depend on the assumption tlegtis a constant, since it
involves the motion of the particleafter a collision only.

particlej has a sliding velocity, which is, immediately after
the collision, equal to the negative of its initial translational
velocity. The sliding acceleration resulting from this sliding

velocity induces the motion of the particle in its initial,
direction. The result is that the translational energy of the
particlej is being increased by the action of the friction force
between the particle and the substrate after the collision.

(We have shown that for almost elastic collisions which we  Still considering a completely asymmetric case, it is of
consider in this paper, the interaction of the particles with thenterest to compute t the net 't energy loss of the system of two

substrateduring a collision is not of importance. This result

does not depend ag), being a constant, but follows from the gﬁgl(%lg)s v%:sohbtam sip+ AEL,. By combining Eqs.(62)
fact that the collision forces are much stronger than the
particle-substrate interaction for the considered range of the L(1+e,)-C
initial velocities) [ AES“p]asymm_—” (1 +en)
The change of the translational energy of the particle 14 ﬂ)
AES“p, is defined asAESIIp [vl|?—|v§|2. The translational '
velocity of the particle when it stops sliding;, is given by mR2
Eq. (60), and the velocity of the particle at the end of the —(1—ey)| 1+ —) %2 (69
collision, v/, is given by Eq(A7).

Figure 10 shows the results fArESIIp We chose to show The net change of the translational energy is positive, as
the total energy change, instead of the relative one, in ordegxpected, so that the system is losing translational kinetic
to be able to address the case of an initially stationary parenergy. As in the symmetric case, we obtain the relative loss
ticle, characterized bf,= 0. The solid line shows the result of energy by dividing with the total initial translational ki-
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t after the collision. CIearIyAE‘Slip depends very weakly on
the degree of the asymmetry. For completely elastic colli-
X v sions,Ap'Slip depends only on the relative initial velocity of

the particles, and it is given by
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1 Effective coefficient of restitutioh.et us defing,, as the

time, measured from the end of a collision, at which neither

of the particles slide any more, so thgt=max(?, tj),

wherety, (k=i,j) is the sliding time of a particle, given by

0 Eqg. (59). We define the effective coefficient of restitution,
e as the ratio of the translational velocities of the particles
at the timet,,,, and their initial velocities. Using the transla-
tional velocity of the particlg, given by Eq.(60), and the
analogous equation for the partiglewe obtain
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FIG. 11. The change of the linear momentum of the pariicle

due to sliding. The solid line shows the result applicable to sym- mR2 1
metric collisions €,=0.9 andC=0.13). . vyl IR
err_ —
| . SR L (68)
netic energy (scaled with reduced mass AEsﬂp b 1+ ——

i I
=AEg)/(v%?. In the completely elastic case, the result for

the relative loss of energy is given by Remarkably enough, this result involves only the “real” co-

efficient of restitution and the geometric properties of the

zﬁ particles. For solid spheres, the difference between the usual
[AE!] Jasymm_ | (65) coefficient of restitution and the effective one is huge; for
sliplefastic mR2\ 2’ e,=0.9, we obtaire¢"=0.36. This value is smaller than the
1+ |_) range reported ir21], but very close to our experimental

results for steel particles on an aluminum substi&8).
Following the same approach, the relative loss of energylight imperfections from the spherical shape in experi-
of the system of two particles undergoing a symmetric elastiénents, noncentral collisions, and/or the fact that the static
collision (scaled with the total initial energyis given by friction between the particles has been neglected in our cal-
[using Eqgs.(43) and (45)] culations, might be the reason for this discrepancy.
General remarksWhile more precise analysis and mate-

mR2 rial parameters could be used in order to more precisely

. T model experiments, we consider that the main results and

[AEgiplelasic= T mpe 2 (66)  observations given in this section are model-independent. In
1+ I_) particular, the observation that the sliding is likely to occur

as a consequence of most of the collisions does not depend

on the details of the model. Of course, the results would be
modified in the case of more complicatédo-dimensional
%eometry of collisions. Still, the particular geometry of a

Comparing Eqgs(65) and(66), we see that the particles lose
twice as much energy due to sliding in symmetric, compare

Longgggﬁé?rl]y 3?¥msmrzgﬁt f?)lllaos\}\llg k;:OIr“e:\Sz;cIJigisr{ -I;L':t L?]tg'gl\i/icollision enters into our results for the energy and momen-
9 y 9 tum change only through the observation that the frictional

:g?o\éelsggl'gj t?f ';22 ipneiltrigfl\(/a;oacti ttigi e;g graesry?or?netgfegotlgnteraction of the colliding particles with the substrate can be
’ y ' ger, b ignored during a collision. Since for the system that we con-

thueeﬁggniz Ietg{tﬁzyn;r:;glgg fﬁa‘éﬁ;&vg%gz};\Zeacgn;%etrsider in this work the collision forces are generally much
4 P ; y %?ronger than the friction forces resulting from particle-

collision slide longer and lose more transiational ENETYY s ubstrate interaction, we do not expect this observation to be

\é\c/)n:as?o%ﬁso ’ez/heenlc:nsatljlfe?nsiagcyedtl;i toasrl'ig;g_g g‘rti:r;;r}(naifgg_modified for more complicated collisions. We do note that a
' P P ore realistic model for the particle-particle interactions

gggsiur:jlgn:re ;}2“3&?”(16\%'65;;2?; ?r?gu'::ﬂ\é?é?gﬁ;iﬂ €.0., by including static frictionwould introduce modifica-

S€q y: 9 P Sions in the expression for the final angular velocity of the
collision. icles. Eq(56

Figure 11 shows the change of momentum due to slidingpartlc es, Eql ; ) -

i — O s ) ' In the experiment§21,27 it is observed that some of the
defined as\ = (vi—Vy) -1, so that it measures the change particles travel for long distances without colliding. Espe-
of the translational velocity of particle(in the i direction  cially in this situation, it is important to include the effect of
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rolling friction, which we have ignored in this section. As that the compression depth (R—r; ;/2)/R satisfies the fol-
long as a particle slides, the effect of rolling friction can belowing equation:

safely neglected, since the coefficient of rolling friction is ) .

much smaller than the coefficient of kinematic sliding fric- X+ yaX+ w§x=0, (A1)

tion.
whereyy is the damping coefficient in the normal direction,

and wg= v2k/m. We limit our discussion to the case of low
damping, so that= yy/wy<1.

The most important observation made in this work is that ~This equation is subject to the following initial conditions:
sliding leads to a considerable modification of the translax(t=0)=0, x(t=0)= Urell(ZR) The relative velocity of the
tional kinetic energy and linear momentum of the particles particles a[t 0 is given byv? o= |v 0|; for a symmetric
even in the limit of completely elastic collisions. Based on¢gjjision, v%,=20°. The solution is
this observation, we give the result for the “effective” coef-
ficient of restitution, valid for dilute systems, where the mean vrel
free path of the particles in between the collisions is much >
longer than the sliding distance. For more dense systems, we, _ p( . ) { / ( 7N)

! .o L . L ——eX —t sin t
conjecture that this “effective” coefficient of restitution 2
strongly depends on the local density and velocity of the A/ w2 (7/”)
particles.

The model that we present is to be used in molecular (A2)
dynamics(MD) type simulation$24] of an externally driven
system of a set of particles interacting on a horizontally os-
cillated surface. In particular, we have prepared the ground
for detailed modeling of the system of two kinds of particles,

V. CONCLUSION

The duration of the collisiont.,, now follows from the
gequwememx(t—tcm) 0, thus

aa a

which are characterized by different rolling properties. In to= = (14 0(e A3
[22] it is shown that strong segregation can be achieved. col | 2 wo( (€). (A3)
Preliminary MD results, based on the model formulated in wg—(—
this paper, show that the realistic modeling of the patrticle- 2

particle and particle-substrate interactions are needed in o[
der to fully understand this effect. n what follows, we also need the time of maximum com-

Further, since experiment is the ultimate test for everyPressiontna. From the condition(t=tn,,)=0, we obtain
theory, it would be of considerable importance to extend the

previous work[17—20 on formulating a continuum theory wz_(m)
for “2D granular gas.” Using the model presented here 2 [N : _ 0
should allow for precise comparison between experimental @o| 57| tmax T N (Ad)
and theoretical results. Possible formulation of realistic con- >
tinuum hydrodynamic theory applicable to this seemingly
simple system would be an important step towards bettegypanding toO(e), it follows that
understanding of granular materials.
teol
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Let us analyze a simple situation, a central collision of (A6)

two identical particles andj, moving with the velocitiesy) | the limit of low dampinge, is close to 1; typically we use
andv?, in thei direction only. Here we ignore the interaction e,=0.9, appropriate for steel particl¢g1-23. Using Eq.

of the particles with the substrate; the importance of thiSA3), we obtaine~ — 2/ In(e,)~0.07.

interaction is discussed in Appendix D. Using this assump- The final velocity of the particlé (at the end of the col-
tion, the normal force, given by Ed2), is the only force lision) follows from the requirement that the total linear mo-
acting on the particlein the normal direction. By combining mentum is conserved in the center-of-mass frame. It is given
the equations of motion for the particlesandj, we obtain by



766 LJUBINKO KONDIC PRE 60

A SR o o The condition for sliding, Eq(25), applied to the simple
vi=s[vitvi—en(vi—v)l. (A7) situation outlined in Sec. IV A, gives that sliding occurs
when|F§|=(1+mRe/1) ugmg. In terms of the compression

For a symmetric collision, this results simplifies &  depth and velocity, this condition is
= —envio. mR2

2 1
RwOX-I— R'}/NX> E

APPENDIX B: NONLINEAR MODELS
FOR THE NORMAL FORCE BETWEEN PARTICLES We note that the left-hand side of this equation is always

The linear model, presented in the preceding section, i§0n-negative, sincey is always repulsivéat the very end of
the simplest approximation for the collision interaction be-a collision, whenx<1, x<0, Ff, is set to 0). In the limit
tween particles. Nonlinear terms, resulting from the final areayy,— 0, we obtain that sliding occurs whenaxomm, where
of contact and other effect§25,31,32,38,40-42,47-49 x°. =(1+mR/)ug/(2Rw?). Using the result for the com-

should be included in order to model the interaction betweemression depth, E§A2), we obtain the time at which sliding
particles more realistically. We use the nonlinear model, OUtstarts,tgﬂn, measured from the beginning of the collision
lined below, in order to connect the values of the parameterssgiil| in the limit yn—0),

in particular the collision timet.,, with the material prop-

erties of the particles. The additional complications which MR\ ug
result from nonlinear models, such as velocity or mass de- sin( wot%in)=(1+ I—) 0 (C2
pendence of the coefficient of restitution, are not considered Urel®0

in this work. The reader is referred {85,40-43,48 for

detailed analysis of these effects. For the initial velocitiesp ., satisfyingv,>v", wherev

The general, commonly used equatior34] =(1+mR/1) w9/ wo, it follows that singet?,;.)<1. For our
set of parameters, and assuming solid sphere$,
. mR . ER . ~10 2 cm/s. Therefore, this condition is satisfied for most
Xt~ XX —mxPTE=0, (B1)  of the collisions. By expanding the sin function in EG.2),
we obtain

where » and E are the material constants. The choige

=0, B=0.5 leads to the Hertz modésee[40,48 for de- 0 1+ﬁ) M“s9 3
tailed discussion The analysis of this equation gives an ex- min™" I )50 02’
pression fort.,, which can then be used to determine the ref”0
appropriate force constant in the linear model,and the gnd
damping coefficientyy,. The result for the collision time is "
[31] 0 m Msd
Xinin= ( 1+ I ) 2Rw3 . (Co

B 1/2+ B
teor (’8)( 1+ 2 Exploiting the symmetry of an elastic collision, we conclude

(B2)  that the sliding condition is satisfied fol  <t<teo— thin-
Next we go to the limit of small but non-zero damping,

For the Hertz model,(0.5)=2.94. The parametét is given  and assume that the conditiant,,;,<1 is still valid, where

by 2Y/[3(1—a?)], whereY is the Young modulus and is  tmin iS NOw the time when sliding occurs fary#0. Using

the Poisson ratio. We usé=2.06x10'? dyn/cn?, ando  ¥ntmin<wotmin, We Taylor-expandk and x [given by Eq.

=0.28. For steel spheres with radiBs=2 mm, and impact (A2)] att=t;,, and keep only the first-order terms in small

velocity vo=10 cm/s, t,~2.55x10°° sec; for v, quantitiesootyin, Yntmin- IN this limit,

=100 cm/s,tcoﬁ_)lﬁ]x 10° sec. We note that the model 0 0

predictst.q~vy  andt.,~R. The parameters that enter the el Urel _

linear model can now be calculated, usiag=m/te[1 X(tmin)= 55 tmin; X(tmin) = 55 (1= Yntmin). - (CS)

+0(e?)] and yy=—2/tq In(&y).

1/2+ B8
m ) - B2+
Ug .

E(2R) 2

The sliding condition, Eq(C1), gives the time when sliding

APPENDIX C: SLIDING DURING COLLISIONS oceurs, for an inelastic collision

1. Sliding during a symmetric collision ( ( mR? Mmsd € o 2) (C6)
in= — ——+0(€).
In Appendixes A and B we obtained the results governing mn vowd  @o

the dynamics of particle collisions, ignoring the interaction

with the substrate. Here we show that the colliding particlesVe note that there are two factors that contributé.jg: the
slide through most of a typical collision. The additional ma-frictional interaction with the substrate gives the first term on
terial constants that are involved are the coefficients of statithe right-hand side of E4C6), and the damping that occurs
and kinematic friction between the considered particles andluring a collision gives the second one. For the initial ve-
the substrateps and . In our estimates, we use,=0.5 locities, satisfying)?el>v°=gﬂs/y,\,, the contribution from
and u,=0.1. the damping is the important one. Using the expression for
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¥n given in Appendix B, we obtaim®~0.05 cm/s(for e, concentrate on the case of the particles moving on a horizon-

—0.9). This velocity is smaller than the initial velocities con- tal static substrate. . . .
sidered in this work. Assuming®>v°®, we conclude that In Appendix C it is shown that, assuming typical experi-
the friction term could be relevant only in the limst— 1 mental conditions, the colliding particles slide relative to the

sincev® diverges in this limit. Consequently, it follows that substrate during most of a collisipn. For simplicity, here we
t,. 0, so that the sliding starts immediately at the begin_concentrate on a symmetric collision, and further assume that
min '

ning of an inelastic symmetric collision. Sin¢g;,—0, the thetﬁopttjr:tlofn'f?r sllfdmg |sttsa_t|sf|_(tad thro_ughout Itlhe chI|S||on,
expansion used to obtain E(C5) is consistent. S0 that the Iriction force attains Its maximum aflowed value,
given by Eq.(18). By using this approximation, we slightly

2. Sliding during an asymmetric collision overestimate the influence of the friction with the substrate
By combining Egs(53) and(54), we obtain the condition ©N the dynamics of a collision. o _
for sliding during an asymmetric collision, From Fig. 4 we observe that the friction fordg,acts in

the direction opposite to the normal collision forég;. In-
c mR2 . c A cludingf in the Newton equations of motion for the particles
PR~ |_(k' Fri)n . i andj, we obtain the modified equation for the compression
p—— =pslmg—Fg;-kl.  (C?)  depth,

S

Mg

X+ yaX+ wix— =—=0, (DD
2R
Using Egs.(2) and (55) for Fy; andFg;, respectively, we

obtain (in terms of the compression depth, see Appendix A nich simplifies to Eq(AL) if the particle-substrate interac-

MR\ g tion is_ ignﬁreq.“ | it . i o
2 = s9_ 7S ;2 oz Using the initial conditions as in Appendix A, we obtain
Rogx+Rynx (1+ [ ) 2 2 [vrelsar(—vre) the solution
mR2
x| -
|

mR2
1+ I_) Ms} ’ (C8)

N 2 N 2
7 i i X=X;—exp ——t|{ X;co wi—|—| t
where vy, is given by Eq.(7). From the first part of this 2 2
appendix, we already know that the first term on the right-
hand side is negligible. The term inside the square brackets is

positive for solid spheres, and;=0.5. For largex’s, the 001
condition, Eq.(C8), is always satisfied, sincﬁng is the Zrel N
. L 2
dominant term. So, we need to explore only the beginning 2R 2 , , [N
and end of a collision. If sgrfvZ,)<0, the sliding condi- T o Vo | ) t . (B2
tion is always satisfied, so that the slower particle always wz_(ﬁ)
slides. When sgnfvr,) >0, we concentrate on the very be- 0 2

ginning of the collision, and obtain the condition
wherex;= u,g9/(2Rw3).
s |v?+vJ°| mR2 mR2 Collision time.For simplicity, we concentrate on the case
W= o | Bs (C9

- of zero damping §,=0) and calculate the change of the
duration of the collision due to the particle-substrate interac-
tion. Let us assume that the change of the collision time is

Since typicallyys= yn/2, this condition is satisfied, assum- small, and writet =t + 7, Wheret.,= 7/ wq is the colli-

ing [vP+ V7|~ [v) = V0| sion time if there is no interaction with the substrate, and

We conclude that the particles entering an asymmetric<t,,. Using the conditiorx(t=t.,) =0, and expanding the
collision slide during the whole course of the collision, ex- compression depth, given by E(D2), to the first order in
cept possibly in the cage; —v|<|v)+V{|. We do not con-  the small quantityrw,, we obtain that=4x;R/vY,. So, the
sider this case here. relative change of the collision time due to the interaction
with the substrate is given by

el

APPENDIX D: MODIFICATION OF COLLISION ,
DYNAMICS DUE TO THE INTERACTION teo—teol 21k
WITH THE SUBSTRATE -

tcoI mo rOele - (D3)
Here we estimate the importance of the interaction be-

tween the colliding particles and the substrate during a coIForv?e|>va, wherev?~ u, g/ w,, the change of the collision

lision. In particular, we estimate under what conditions thetime is small. Using the parameters given in Appendixes B

interaction with the substrate significantly modifies the re-and C, we estimate®~10"3 cm/s. So, for most of the ex-

sults for the compression depth and the duration of a colliperimentally realizable conditions, the duration of a collision

sion. We use the linear model outlined in Appendix A, andis just very weakly influenced by the particle-substrate inter-
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action. We assume®>v?, so thatrwo<1, and the expan- and Qf=—v/R. For tp; <t<te—t{., the sliding condi-

sion of Eq.(D2) is consistent. tion, |fi|= us|Fy |, is satisfied, so that the angular accelera-
Maximum compression deptlrollowing the same ap- tion reaches its maximurfconstank value

proach, we estimate the modification of the maximum com-

pression achieved during a collision, due to the interaction Q:ﬂ (E3)

with the substrate. Working in the limit of zero damping, and =T G

assuming a small modification of the timgg,,,, when the

maximum compressionx’,.,, is reached, we obtain/,, ~ FOr tee™>t>te—th,, the sliding condition is not satisfied

~x¢+0%/ (2Rwe). Comparing this result with the result for anymore, but the particle is already sliding, so tats still

the compression depth calculated previously, given by thgiven by Eq.(E3). The angular velocity of the particleat

elastic limit of Eq.(39), we obtain the end of the collision is
Xmax~ Xmax X¢ M9 Qi :Qi(t:tmin)+Tﬂkg(tcol_tmin)- (E4
———=2Rwy—5 = —5—. (D4)
Xmax Urel  Urel®@o

Combining Egs.(E2) and (E4), we obtain the final result,

iven by Eq.(36).
Similar to the analysis of the collision time, we observe thatglv y Bq.(36)

for v?e|>va, the maximum compression depth is very weakly
influenced by the particle-substrate interaction.
We conclude that for most of the collisions occurring in a. About tangential force

experiments, the interaction with the substrate just slightly : - -
modifies the compression depth and the duration of a colli- Here we estimate under what conditidfs, given by Eq.

. . b
sion. These small modifications are ignored in the subse(-.e)’ rea_lches Its maximum aI_Iowed value_,_,| F.Nl' A.S men-
quent analysis. tioned in Sgc. v B_, here we ignore the frlctlonal interaction
of the particles with the substrate during a collision. For
simplicity, we also neglect the damping in the normal direc-
APPENDIX E: ROTATIONS OF THE PARTICLES tions, so thafF$|=2mRw3x (see Appendix A Next, we
DURING A COLLISION note that the relative velocity of the point of contact satisfies
vi(t=0)>v%,(t>0), sinceFg always decreaseas,, [given
_ _ o _ _ by Eq.(7)]. In what follows, we use /,(t>0)=v,(t=0),
During symmetric collisions, the rotational motion of the and give the upper limit of the first term entering the defini-
particles is influenced only by the friction force between thetign of =
particles and the substrate. Here we consider only elastic | ¢t s first concentrate on large compression depths,
collisions, since in Appendix C it is shown that the part'deswxmalev?—v?|/(2Rw0) (see Appendix A This compres-

entering an inelastic collision start sliding immediately, so_. z
s . '~ sion is reached at=t=7/(2wg). We use t=t
that the angular acceleration is constant during the wholé max=/(20o) Uref(t="tma)

= Z (+—0)=|\0 0 P C ; i
course of collision, simplifying the calculationsee Sec. _Ufe'(tﬂo)_clvi ﬁvi |3 and Ebt%)n thaFp, reaches its maxi
IV A 2). Since there is no possibility of confusion, we use Mum allowed vaiue ifsee Eq(6)]
scalar notation, with the sign convention that thesign

2. Rotations during asymmetric collisions

1. Rotations during symmetric collisions

corresponds to the forces Aacting in the direction, and to %S|V10+V,Q|> szo|ViO—V,Q|- (E)

the angular motion in the-j direction (the coordinate axes

are as shown in Fig.)4 Since ys/wg<<1, this condition is never satisfied farg
At the very beginning of an elastic collision, for<@  =0(1) and|v,+Vv)|~[v)—V}|.

<tmin [thin i given by Eq.(C3)], the colliding particles do  For smallx’s, let us assume agairf,(t>0)=0v%,(t=0).

not slide. During this time interval, the angLAJIar accelerationFrom Eq.(6) it follows thatF§ reaches its cutoff value when
of the particlei, which initially moves in the—i direction, is  x<x°™, where

given by -
xCrt VO +
mR X s vl g ) (E6)
) R R FS |_ Xmax 2Vs®o |Vi —V]-|
Qi:_fi:_ N1 == v?e|wét, (El) ) 0 0 . A
| | 1+mR2 14 mR Using x=~t|v)—V}|/(2R) (valid for x<Xyay), we obtain that
| | the conditionx<x°" is satisfied fort<t°", where
crit V~O+VQ
wherexetvf’e?,/(ZR), and Egs(2) and(31) have been used. tt __rs | :) i)' —0(e). (E7)
Integration yields max  TWo |vi—V;

In order to calculate the angular velocity of the partickt

2
Q(t=t%)=0°+ E ﬂ( 1+ ﬁ)ﬂ (e2) theendofa Collisionﬂif, we have to integrate the angular

o 2 . : . ..
2 1 ) vrwy accelerationf2; , during the course of a collision. The angu-
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lar acceleration is proportional %, as follows from Eq. correct to first order ire. For ys= yn/2, and the parameters
(51), wheref, is being neglected. In performing the integra- S in Appendix BC=mmRPe/(41)~0.13. The final angular
tion, it appears that we have to consider separately two rezelocity of the particlé is now given by Eq(56).

gions: 0<t<t°™, during whichF§ varies, and>t°™, during

which F is constant. The final angular velocity of the par- _
ticle i is formally given by APPENDIX F: JUMP CONDITION

FOR ASYMMETRIC PARTICLE COLLISIONS

ent

i 0 teol . Throughout this work, we have assumed that the particles
Q=0+ Qdt+ | Qidt. (E8)
0 tCI’I

are bound to move on the surface of the substrate. Here we
explore the validity of this assumption. The required condi-

) o o tion for a particle to be bound to the substrate is that the
This result can be simplified by realizing tHa&|=0(€). It ormal force|Fy|, given by Eq.(54), is nonzero. We imme-
follows that|Q;|=O(e), so that the contribution of the sec- diately observe that only a particle colliding with a slower
ond term on the right-hand side of B&8) is proportional to  particle [so that sgn¢ v5) <0, see Eq(7)] experiences a

|Q4]t°"=0(€?). For consistency reasons, we neglect thisforce in the+k direction due to a collision. Let us concen-
correction, and ignore the fact th#| could reach Coulomb trate on this situation. Using the value %S att=0, we
cutoff at the very beginning and end of a collision. This gbtain that a particle detaches from the substrate if
estimate is not valid fofv)—v{|<|v)+v{|, when the par-

ticles initially move with almost the same velocities. As al-

ready mentioned in Appendix C, we do not consider this case Ys, ,
here. fre=m 7|Urel|_g >0, (F1)
b. The angular velocity of the particles where Eqs(7), (54), and(55) have been used. It follows that,
during an asymmetric collision during the collisions distinguished ByZ,|>v%=2g/ys, the

Using Egs.(51) and (55), and neglecting the particle- faster particle detaches from the substrate. Using the values
substrate interaction during a collision, we obtain the angulapf the parameters as in Appendix B, apg=y\/2, we ob-
acceleration of the particlie tain v9~0.5 cm/s. Correspondingly, this effect takes place

during most of the asymmetric collisions occurring in typical
. mR2 y L experiment$21,22. By relating the impulse of the fordg,;
Q=——— —S[(Qi+Qj)-j]j, (E9)  transferred to a particle while the collision is taking place,

I 2 . LT A
with the change of the momentum of the particle in the
direction, we obtain the estimate for the initial velocity of the

and ;= €; . Recalling that€); and €}; are always in the particle in thek direction,

opposite direction fron€2; +£};, we obtain a simple system
of coupled ordinary differential equations

. vi=| B —g| = (F2)
Q;=—-C'(Qi+), (E10 2 !7rel wo'

Q)=-C'(Qi+ ), (E1D  The maximum height above the substrate which the particle

reaches ih?=(v?)?/(2g), and the time spent without con-
whereC’'=mR2yg/(21). We defineQ, =Q;+£;, so that tact with the substrate i§=2v?/g. Let us assume a com-

Q. =-2C'Q. , with the solution pletely asymmetric collision, so thae|=v°, |v]|=0, and
ve=v5=0". Using the parameters from Appendix B, for
Q. (1)=0, (t=0)exg —2C't). (E12  v°=10 cm/s, we obtaim®~0.5 cm/s,h?~1.3x10"* cm,

and t?~10 2 sec. Since the maximum height is much
smaller than the diameter of the particles, this detachment
introduces negligible corrections to the dynamics of the par-
ticle collisions in thex-y plane. Further, even thougtf
>1t., SO that the particle is not in contact with the substrate
during the time that is much longer than the duration of the
L collision, t* is still much smaller than the sliding time scale,

_ 0, 0 _ 0, 0 specified by Eq(59). So, our results for the sliding of the
AQ= {7+ Qp)[exp(—2C) — 1]}~ — (7 + Q) C, particles after a collision are not significantly modified due to
(E13)  the detachment effect.

At t=tey, Q. (t=t,)=Q, (t=0)exp(=2C), where C
=C'1,=0(e). Recalling that the changes 6}; and £,
are the same, so tha€,(t=t.,)=Q(t=0)+AQ, (k
=1i,j), the change of the angular velocities is given by
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